
Understanding, Modeling, and Improving
Main-Memory Database Performance

Stefan Manegold

About the cover: The image depicts a relief on a wall of theTemple of Horus at Edfu
in Upper Egypt between Aswan and Luxor. This major Ptolemaic temple is dedicated
to the falcon godHorus and was built over a 180-year period from 237 BC to 57 BC.
I took the picture during a memorable two-week sightseeing tour through Egypt in
September 2000, after having attended the VLDB Conference in Cairo.

Understanding, Modeling, and Improving
Main-Memory Database Performance

A P

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus

prof. mr. P. F. van der Heijden
ten overstaan van een door het

college voor promoties ingestelde commissie,
in het openbaar te verdedigen

in de Aula der Universiteit
op dinsdag 17 december 2002, te 11.00 uur

door

Stefan Manegold

geboren te Eschwege, Duitsland

Promotiecommissie

Promotor: M. L. Kersten

Overige leden: D. J. DeWitt
P. van Emde Boas
L. O. Hertzberger
A. P. J. M. Siebes
G. Weikum

Faculteit

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Universiteit van Amsterdam

The research reported in this thesis has been partially carried out atCWI, the Dutch
National Research Laboratory for Mathematics and Computer Science, within the
themeData Mining and Knowledge Discovery, a subdivision of the research cluster
Information Systems.

SIKS Dissertation Series No 2002-17.
The research reported in this thesis has been carried out under the auspices ofSIKS,
the Dutch Research School for Information and Knowledge Systems.

ISBN 90 6196 517 9

Contents

Acknowledgements 9

1 Introduction 11
1.1 Query Processing . 12
1.2 Cost Models . 14
1.3 Increasing Importance of Memory Access Costs 16
1.4 Research Objectives . 16
1.5 Thesis Outline . 18

2 Preliminaries 21
2.1 Cost Models . 21

2.1.1 Cost Components . 21
2.1.2 Cost Factors . 23
2.1.3 Types of (Cost) Models . 25
2.1.4 Architecture and Evaluation of Database Cost Models 26

2.2 Logical Cost Models/ Estimation 27
2.2.1 Sampling-based Techniques 28
2.2.2 Parametric Techniques . 28
2.2.3 Probabilistic Counting Techniques 29
2.2.4 Non-parametric (Histogram-based) Techniques 29

2.3 I/O-based Cost Models . 30
2.4 Main-Memory Cost Models . 31

2.4.1 Office-By-Example (OBE) 31
2.4.2 Smallbase . 32
2.4.3 Remarks . 34

2.5 Cost Models for Federated and Multi-Database Systems 34
2.5.1 Calibration . 34
2.5.2 Sampling . 35
2.5.3 Cost Vector Database . 35

2.6 Main Memory Database Systems . 36
2.7 Monet . 37

2.7.1 Design . 37
2.7.2 Architecture and Implementation 39

6 Contents

2.7.3 Query Optimization . 40

3 Cost Factors in MMDBMS 41
3.1 Commodity Computer Architecture 41

3.1.1 CPUs . 41
3.1.2 Main-Memory- & Cache-Systems 44

3.2 The New Bottleneck: Memory Access 49
3.2.1 Initial Example . 50
3.2.2 General Observations . 50
3.2.3 Detailed Analysis . 51
3.2.4 Discussion . 54
3.2.5 Implications for Data Structures 55

3.3 The Calibrator: Quantification of Memory Access Costs 57
3.3.1 Calibrating the (Cache-) Memory System 57
3.3.2 Calibrating the TLB . 62
3.3.3 Summary . 65

3.4 Further Observations . 66
3.4.1 Parallel Memory Access . 66
3.4.2 Prefetched Memory Access 68
3.4.3 Future Hardware Features 69

4 Generic Database Cost Models 71
4.1 Related Work and Historical Development 72
4.2 Outline . 73
4.3 The Idea . 73

4.3.1 Data Regions . 74
4.3.2 Basic Access Patterns . 74
4.3.3 Compound Access Patterns 78

4.4 Deriving Cost Functions . 79
4.4.1 Preliminaries . 79
4.4.2 Single Sequential Traversal 80
4.4.3 Single Random Traversal . 83
4.4.4 Discussion . 85
4.4.5 Repetitive Traversals . 87
4.4.6 Random Access . 88
4.4.7 Interleaved Multi-Cursor Access 90

4.5 Combining Cost Functions . 93
4.5.1 Sequential Execution . 93
4.5.2 Concurrent Execution . 94
4.5.3 Query Execution Plans . 95

4.6 CPU Costs . 95
4.6.1 What to calibrate? . 96
4.6.2 How to calibrate? . 96
4.6.3 When to calibrate? . 98

4.7 Experimental Validation . 98

Contents 7

4.7.1 Setup . 98
4.7.2 Results . 98

4.8 Conclusion . 103

5 Self-tuning Cache-conscious Join Algorithms 105
5.1 Introduction . 105

5.1.1 Related Work . 107
5.1.2 Outline . 108

5.2 Partitioned Hash-Join . 109
5.2.1 Radix-Cluster Algorithm . 110
5.2.2 Quantitative Assessment . 110

5.3 Radix-Join . 131
5.3.1 Isolated Radix-Join Performance 131
5.3.2 Overall Radix-Join Performance 134
5.3.3 Partitioned Hash-Join vs. Radix-Join 134

5.4 Evaluation . 134
5.4.1 Implications for Implementation Techniques 136
5.4.2 Implications for Query Processing Algorithms 139
5.4.3 Implications for Disk Resident Systems 139

5.5 Conclusion . 140

6 Summary and Outlook 141
6.1 Contributions . 141
6.2 Conclusion . 143
6.3 Open Problems and Future Work . 143

Bibliography 145

Curriculum Vitae 161
Publications . 162

List of Tables and Figures 165

List of Symbols 167

Samenvatting 171

8

Acknowledgements

My first visit to Amsterdam during an InterRail-tour through Europe in summer 1992
lasted only a few hours and left an impression of anything else but hospitality: All
left-luggage lockers occupied, endless queues in front of the left-luggage office, and
sightseeing while carry a heavy backpack was not much fun. It took another 5 years,
a move from C. where I had studied to B. where I got my first (real) job, two much
more pleasant visits in summer 1997, during which A. presented itself in an almost
Mediterranean atmosphere, and finally a job offer, to convince me that Amsterdam
might be a place to life and work. However, with the contract signed and everything
else arranged, there was no need anymore for a Mediterranean atmosphere, hence,
when I arrived on October 1st 1997 it started raining and did not stop until March
1998... Nevertheless, I did stay, enjoyed life and work in Amsterdam, and eventually
wrote this booklet.

Although only one name appears on the cover, this thesis would not exist without
the direct or indirect support of various helpful people who accompanied me during
the last five years, both locally and remotely. I take this opportunity to express my
thanks to all of them.

First of all, I would like to thank my supervisor Martin Kersten. Together with
Arno Siebes, he provided me with this great opportunity to come to Amsterdam and
do research in an inspiring and well-funded group. Back then, both of us had no idea,
which “problems” would pop-up a few years later. The more I am grateful to him for
convincing me, whenever I lost faith, that all the struggling will eventually lead to a
successful and (hopefully) happy end.

Further, I would like to thank David DeWitt, Peter van Emde Boas, Louis Hertz-
berger, Arno Siebes, and Gerhard Weikum for being on my committee. It is a great
honor for me, that all of them found time to read my theses.

Special thanks go to all my Dutch and international colleagues within INS for the
warm welcome they gave me right from the beginning, and their support after my most
memorable encounter with Amsterdam traffic. Some of them shall be mentioned here,
but I am thankful to all the others as well.

Two colleagues at CWI played major roles during my PhD track. Working together
with Florian and Peter, and writing successful papers with both of them (though not
at the same time) has been a privilege, an enlightning experience, and a great pleasure
that I would not want to miss. Long deadline-nights with last-minute-submission
adrenaline were always rewarded by “traditional dinners”, at least as long nights with

10 Acknowledgements

“contemporary music” or Pauwel Kwak and his friends, and finally joint conference
trips. I hope there is more to come in the future.

Work at CWI would not have been that interesting, if there had not been “some”
distractions from the pure research work. I could not imagine a better colleague for
system administration and “Monet-hacking” than Niels. We do speak the same lan-
guage, not only when talking about “common enemies”. Menzo has been the perfect
room mate. Not only did he accept my irregular office hours, but he also showed
great patience and helpfulness with all my nasty questions and problems, ranging from
Dutch language and culture over details of Monet to various computer- and software-
related problems. Always walking a few steps ahead of me, Albrecht guided my
way through all the administrative and technical hurdles of the last few month of this
project.

Finally, I want thank all my “old friends from home”. Despite being spread (al-
most) all over Europe, we stayed in touch, meat at various parties, spent fortunes on
phone bills, and some of them even managed to visit me in Amsterdam. Not loosing
contact to them has been vital for my Amsterdam-project. I am especially grateful to
my most frequent (and most welcome) visitor that she has been concerned of and took
care of my cultural life.

Insbesondere danke ich auch meiner Familie. Ohne Eure Geduld und Eure Un-
tersẗutzung — nicht nur was mein leibliches Wohl angeht ;-) — wäre diese Arbeit
nicht möglich gewesen.

Amsterdam, November 2002

Chapter 1

Introduction

Databases have not only become essential to business and science, but also begin to
appear more and more in everyday life. Classically, databases are used to maintain
internal business data about employees, clients, accounting, stock, and manufacturing
processes. Furthermore, companies nowadays use them to present data to customers
and clients on the World-Wide-Web. In science, databases store the data gathered by
astronomers, by investigators of the human genome, and by biochemists exploring
the medical properties of proteins, to name only a few examples. With home-PC’s
becoming more and more powerful — one can easily get 1 gigabyte (GB) of main-
memory and up to 160 GB on a single commodity disk drive — database systems
are beginning to appear as a common tool for various computer applications, much as
spreadsheets and word processors did before them. Even in portable devices, such as
PDAs or mobile phones, (small) databases are used for storing everything from contact
information such as postal addresses and phone numbers to your digital family photo
album. And smart-cards storing a persons medical history are just around the corner.

The power of databases comes from a body of knowledge and technology that
has developed over several decades and is embodied in specialized software called a
database management system, orDBMS, or colloquially a “database system”. DBMSs
are among the most complex types of software available. A DBMS is a powerful tool
for creating and managing large amounts of data efficiently. First of all, it provides
capabilities allowing safe and persistent storage of data over long periods of time.
Furthermore, DBMSs provide powerful query1 languages, such as for instanceSQL
(Structured Query Language), that allow both interactive users and application pro-
grams to access and modify the data stored in the database.

In this thesis, we assume the reader is familiar with the basic concepts of DBMSs
and database query processing as described in good introductory literature, for in-
stance [KS91, EN94, AHV95, GMUW02].

1A “query” is database lingo for a question about the data.

12 1 Introduction

Statistics

Meta Data

Result Data

Data Dictionary

Cost
Functions

Statistics

Schema
Information

SQL Query

Query Parser & Preprocessor

Internal Query Representation

Execution Engine

(Physical) Query Execution Plan

Query Optimizer

Data Storage

Figure 1.1: Query Processing Architecture

1.1 Query Processing

A major reason why database systems have become so popular and successful is the
fact that users can formulate their queries in an almost “intuitive” way using declara-
tive query languages such as SQL. This means, that users just have to care aboutwhat
they want to know, but nothow to retrieve this information from the data stored in
the database. In particular, users do not need to have any sophisticated programming
skills or knowledge about how the DBMS physically stores the data. All a user needs
to know to formulate ad-hoc queries is the query language and the logical database
schema.

Completely hidden from the user, a complex machinery within the DBMS then
takes care of interpreting the user’s query and executing the right commands to provide
the user with the requested answer. Figure 1.1 roughly sketches a typical database
system’s query processing architecture.2

Briefly, query processing consists of the following steps. First, the query text is

2The complete architecture of nowadays DBMSs is obviously much more complex. Here, we focus on
the parts that are related to the work in this thesis. We also omit details that are not specific to problems and
techniques addressed in this work.

1.1 Query Processing 13

parsed, checked for syntactical and semantical correctness, and translated into an in-
ternal representation. In relational DBMSs, this representation is typically derived
from the relational algebraand makes up some kind ofoperator tree. Due to cer-
tain properties of the relational algebra, such as commutativity and associativity of
operators, each query can be represented by various operator trees. These trees are
obviously equivalent in that they define the same query result. However, the order
in which the various operators are applied may differ. Moreover, relational algebra
provides equivalent alternatives for certain operator combinations. One of the most
prominent examples is the following. Imagine a sequence where a cartesian product
of two tables, say×(U,V), is followed by a selectionσ applying a predicateθ on
the newly combined table:σθ(×(U,V)). This sequence can alternatively be expressed
as a single join operationZ on the two tables, i.e.,σθ(×(U,V)) ≡Zθ (U,V). Usu-
ally, database query processors apply some normalizations first, to provide a “clean”
starting point for the subsequent tasks.

In a second step, the normalized operator tree has to be translated into a proce-
dural program that the DBMS’s query engine can execute. We call such a program a
query execution plan(QEP), or simplyquery plan. Usually, a declarative query can
be translated into several equivalent QEPs. These QEPs may differ not only in the
order of operator execution (see above), but also in the algorithms used for each single
operator (e.g.,hash-join, merge-join, andnested-loop-joinare the most prominent join
algorithms), and in the kind of access structures (such as indices) that are used. The
DBMS’s query optimizer is in charge of choosing the “best” (or at least a “reasonably
good”) alternative. The goal or objective (function) of this optimization depends on
the application. Traditional goals are, e.g., to minimize the response time (for the first
answer, or for the complete result), to minimize the resource consumption (like CPU
time, network bandwidth or amount of memory), or to maximize the throughput, i.e.,
the number of queries that the system can answer per time. Other, less obvious objec-
tives — e.g., in a mobile environment — may be to minimize the power consumption
needed to answer the query or the on-line time being connected to a remote database
server.

For the time being, we do not have to distinguish between these different objective
functions. Hence, we use the common terminology in the database world, and call
them theexecution costsor simplycostsof the QEP. Thus, query optimization means
to find a QEP with minimal execution costs.

Conceptually, query optimization is often split into two phases. First, the opti-
mizer determines the order in which the single operators are to be applied. This phase
is commonly referred to aslogical optimization. By definition, the final result size
is the same for all equivalent QEPs of a given query. However, with different oper-
ator orders, the intermediate result sizes may vary significantly. Assuming that the
execution costs of each operator, and hence of the whole QEP, are mainly determined
by the amount of data that is to be processed, logical optimization usually aims at
minimizing the total sum of all intermediate result sizes in a QEP. In a second phase,
commonly calledphysical optimization, the query optimizer determines for each op-
erator in the QEP, which of the available algorithms is to be used and whether existing
access structures (e.g., indices) can/should be exploited. Physical optimization aims

14 1 Introduction

at actually minimizing the execution costs with respect to the given cost metric.
In practice, however, the implicit assumption that the bestphysical plancan be

derived from the bestlogical planusually does not hold. Hence, query optimization is
often performed in a single phase combining both logical and physical optimization.
A further discussion of this subject, especially the problems that arise due to the in-
creased complexity of the optimization process, is beyond the scope of the thesis. The
interested reader is referred to, e.g., [Cha98, Pel97, Waa00]. In this work, we focus on
cost modeling and consider cost models independently from a particular optimization
algorithm.

1.2 Cost Models

In order to find the desired QEP, optimizers need to assess and compare different
alternatives with respect to their costs. Obviously, evaluating a QEP to measure its
execution cost does not make sense. Hence, we need to find a way topredict the
execution costs of a QEPa priori, i.e., without actually evaluating it.

This is wherecost modelscome into play. Cost models can be seen as abstract
images or descriptions of the real system. Providing a simplified view of the system,
(cost) models help us to analyze and/or better understand how a system works, and
hence, enable us to estimate query execution costs within this “idealized” abstract
system without actually executing the query. The abstraction from the real system is
captured in a set of assumptions made about the system, e.g., assuming uniform data
distributions, independence of attribute values, constant cost (time) per I/O operation,
no system contention, etc.. The degree of abstraction depends on the purpose the cost
model is supposed to serve. In general, the more general assumptions are made, i.e.,
the more abstract the model is, the less adequate or accurate it is. The more detailed a
model is, the more accurate it is. The most detailed, and hence most accurate, model
is the system itself. However, not only the accuracy of a model is important, but also
the time necessary to derive estimations using the model. Here, it usually holds, that
evaluation time decreases with the increasing degree of abstraction. In other words,
the less accurate a model is, the faster can estimations be evaluated. For instance,
models based onsimulationprovide a very detailed image of the real system, and
hence allow very accurate estimates. Evaluating the model, however, means running
a simulation experiment, which might take even longer than running the real system.
On the other hand, using more general assumptions makes the models simpler. Simple
models might then be represented in closed mathematical terms. We call these models
analytical models. Evaluating analytical models means simply evaluating (a set of)
closed mathematical expressions. This is usually much faster than both evaluating
simulation models and evaluating the real system. This trade-off between accuracy
and evaluation performance is one of the most important factors to be considered
when choosing or designing models for certain purposes.

In principle, query optimization does not require very accurate cost models that
estimate the execution cost to the microsecond. The major requirement here is, that the
costs estimated by the cost model generate the same order on the QEPs as the actual

1.2 Cost Models 15

execution costs do. The “cheapest” of a set of candidate QEPs is still the very same
QEP, even if the cost model is off by an order of magnitude for all plans (provided it is
off in the same direction for all plans). We use the termadequatefor such cost models
that preserve the order among the QEPs but are not necessarily accurate. As the query
optimization problem is in general NP-hard [IK84, CM95, SM97], findingthe best
plan is practically not possible in reasonable time. Hence, optimization strategies
usually (try to) finda reasonably goodplan.3 This in turn means that is it not necessary
to preserve the proper order of plans whose costs are “very similar”; actually, it is often
not even necessary to distinguish plans with very similar costs at all.

Many traditional disk-based DBMSs make use of these properties. In a disk-based
DBMS, access to secondary storage is the dominating cost factor. To keep cost models
simple, they often neglect other cost factors and estimate only I/O costs. Sometimes,
I/O costs are not even given in time needed to perform the required I/O operations, but
simply the number of necessary I/O operations is estimated.

However, there are situations where these simplifications do not apply as more
accurate costs are required. For instance, two plans may differ in a way that one
requires more I/O operations while the other one requires more computation time.
To compare such plans, we need to express their total costs (i.e., I/O + CPU) in a
common unit (i.e., time). Also the objective function or the stopping criterion for the
optimization process might require more accurate costs in terms of processing time:
“Stop optimization when the cheapest plan found so far takes less than 1 second”, or
“Stop optimization when the total time spent on optimization has reached a certain
fraction of the execution time of the cheapest plan found so far”.

In this thesis, we consider the following three cost components. A more elaborate
description is given in Chapter 2.

Logical Costs consider only the data distributions and the semantics of relational al-
gebra operations to estimate intermediate result sizes of a given (logical) query
plan.

Algorithmic Costs extend logical costs by taking also the computational complexity
(expressed in terms ofO-classes) of the algorithms into account.

Physical Costsfinally combine algorithmic costs with system/hardware specific pa-
rameters to predict the total costs in terms of execution time.

Next to query optimization, cost models can serve another purpose. Especially al-
gorithmic and physical cost models can help database developers to understand and/or
predict the performance of existing algorithms on new hardware systems. Thus, they
can improve the algorithms or even design new ones without having to run time and
resource consuming experiments to evaluate their performance.

3A further discussion of optimization strategies is beyond the scope of this thesis.

16 1 Introduction

1.3 Increasing Importance of Memory Access Costs

Looking at the hardware development over, the last two decades, we recognized two
major trends. On the one hand, CPU speed keeps on following Moore’s law [Moo65],
i.e., it doubles about every 18 months. In other words, clock speeds increase by more
than 50 percent per year, and there are no indications that this trend might significantly
change in the foreseeable future. Concerning main-memory, the picture looks differ-
ently. While main-memory sizes and main-memory bandwidth almost keep up with
the CPU development, main-memory access latency is increasingly staying behind,
improving only about 1 percent per year. New DRAM standards like Rambus and
SLDRAM continue concentrating on improving the bandwidth, but hardly manage to
reduce the latency. Hence, the performance gap between CPU speed and memory la-
tency that has grown significantly over the last two decades is expected to widen even
more in the near future.

To bridge the gap, hardware vendors have introduced small but fast cache memo-
ries — consisting of fast but expensive SRAM chips — between the CPU and main-
memory. Nowadays, cache memories are often organized in two or three cascading
levels, with both their size and latency growing with the distance from the CPU. Cache
memories can reduce the memory latency, only if the requested data is found in one
of the cache levels. This mainly depends on the application’s memory access pattern.
Hence, it becomes the responsibility of software developers to design and implement
algorithms that make optimal use of the very cache/memory architecture the respective
application runs on.

Standard main-memory database technology has mainly ignored this hardware de-
velopment. The design of algorithms and especially cost models is still based on the
assumptions that did hold in the early 80’s. Without I/O as dominant cost factor, costs
are commonly reduced to CPU processing costs. Memory access, if not considered
negligible compared to CPU costs, is assumed to be uniform.

With memory sizes in commodity hardware getting larger at a rapid rate, also in
disk-based DBMSs many database processing tasks can more and more take place in
main memory.4 As the persistent data remains located on disk farms, initial data access
still requires disk I/O. But once the query operands are identified and streamed into
memory, large intermediate results, temporary data structures, and search accelerators
will fit into main memory, significantly reducing the number of I/O operations. With
powerful RAID systems and high-capacity I/O buses reducing the I/O bandwidth at a
rate that roughly matches the improvements in CPU speed, even in disk-based DBMSs
memory access is expected to become a cost factor that can no longer be ignored.

1.4 Research Objectives

Concerning cost modeling, both data volume estimations and complexity measures are
independent of the underlying system and hardware architecture. However, the per-

4“ . . . the typical computing engine may have one terabyte of main memory. “Hot” tables and most
indexes will be main-memory resident.” [BBC+98].

1.4 Research Objectives 17

formance experienced in terms of time costs is heavily dependent on these parameters.
In this thesis, we devote ourselves to the latter, also referred to as physical costs.

The research in this thesis is driven by three major questions:

Understanding: What is the impact of the increasing gap between CPU and memory
access costs on main-memory database performance?

Modeling: Is it possible to predict memory access cost accurately, and if so, how
should the respective physical cost functions be designed?

Improving: What can we learn from analyzing and modeling main-memory database
performance on hierarchical memory systems, and how can we use this knowl-
edge to improve main-memory database technology?

In more detail, the research problems and objectives addressed in this document
are formulated as follows:

Understanding Predicting physical query processing costs requires in-depth insight
in how database software and modern hardware do interact. Hence, the first problem
is to identify which hardware-specific parameters determine the processing costs in
a main-memory database, and therefore need to be reflected in the cost models. It
is desirable to analyze various hardware platforms to identify the commonalities and
differences of the performance characteristics.

Modeling Another open issue is how to acquire new cost models. Traditionally,
physical cost functions highly depend on various parameters that are specific to the
very DBMS’s software (e.g., the algorithms used and the way they are implemented)
and to the hardware the database systems is running on (such as disk access latencies,
I/O bandwidth, memory access speed, CPU speed, etc.). Thus, physical cost functions
are usually created “by hand” for each algorithm, each DBMS, and each platform
individually. This approach is not only time-consuming, but also tends to be error-
prone. Hence, the question is whether — and if so, how — the process of designing
physical cost models can be simplified and/or automated. Moreover, the generic use of
database software on a range of platforms requires an analysis of their portability. The
problem is, that we need to find a proper set of parameters describing the hardware-
specific features and to design a cost model that can use these parameters.

Improving The main task of performance modeling is to understand and describe
the behavior of a given system consisting of certain hardware and software compo-
nents. However, while analyzing the details, one often is confronted with a priori
unknown bottlenecks that might have to be minimized or even eliminated to improve
the performance. The final question addressed in this thesis is whether and how we
can use both the cost models we created and the knowledge gained while developing
them, to improve main-memory database technology.

18 1 Introduction

1.5 Thesis Outline

The research objectives mentioned above are explored in detail in the remaining chap-
ters.

In Chapter 2, we dedicate ourselves to preliminaries, briefly reviewing the role of
performance models in database literature. We mainly focus on the different types of
cost models, the various purposes they serve, and proposed techniques how to acquire
cost models for a given system and purpose. Moreover, we give a concise overview
of our main-memory DBMS prototype Monet, which we use as implementation and
validation platform throughout this thesis.

In order to create database cost models, we need to know which parameters are
relevant for the performance behavior of database algorithms. In Chapter 3, we first
discuss the characteristics of state-of-the-art CPU, cache-, and main-memory archi-
tectures. Our research covers various hardware platforms, ranging form standard PC’s
over workstations to high-performance servers. For convenience, we introduce a uni-
fied hardware model, that gathers the performance-relevant characteristics of hierar-
chical memory systems — including CPU caches, main-memory, and disk systems —
in a single framework. The unified hardware model provides the necessary abstrac-
tion to treat various hardware platforms equally on a qualitative level. Equipped with
these technical details, we analyze the impact of various hardware characteristics on
the performance of database algorithms. In particular, we show that on modern hi-
erarchical memory systems (consisting of the main memory and one or more levels
of caches) memory access must not be seen as “for free”, not even as uniform, con-
cerning costs. Hence, traditional cost models focusing on I/O and CPU costs are not
suitable any more. To adequately predict database performance in the new scenario,
where main memory access is (partly) replacing the formerly cost-dominating disk ac-
cess, new cost models are required that respect the performance impact of hierarchical
memory systems. The analysis results in a calibration tool that automatically derives
the relevant hardware characteristics, such as cache sizes, cache miss latencies, and
memory access bandwidths, from any hardware platform. The ability to quantify these
hardware features lays the foundation for hardware independent database cost models.

Equipped with the necessary tools, we are ready to design hardware independent
physical database cost models in Chapter 4. Focusing on data access costs, we develop
a cost model that achieves hardware independence by using the hardware characteris-
tics as parameters. The unified hardware model permits the creation of parameterized
cost functions. Porting these functions to other systems or hardware platforms can
then simply be done by filling in the new specific parameters as derived by our cal-
ibration tool. Moreover, we propose a generic approach that simplifies the task of
creating cost functions for a plethora of database operations. For this purpose, we
introduce the concept of data access patterns as a method to describe the data access
behavior of database algorithms in an abstract manner. Based on this concept, we
propose a novel generic technique to design cost models.

In Chapter 5, we demonstrate how to use the knowledge gained during our work
on database performance modeling to design algorithms that efficiently exploit the

1.5 Thesis Outline 19

performance potentials of contemporary hardware architectures.5 Focusing on join
algorithms in a main-memory scenario and pursuing our line of generic and portable
solutions, we propose new cache-conscious algorithms that automatically adapt to
new hardware platforms. In this context, our cost models serve a triple purpose. First,
they prove valuable to model and hence understand the performance behavior of dif-
ferent algorithms in various hardware environments. Second, they enable us to design
algorithms that can be tuned to achieve the best performance on various hardware
platform. Tuning is done automatically at runtime, using the cost models and the pa-
rameters as measured by our calibration tool. And third, of course, our cost functions
serve as input for cost-based query optimization.

The thesis is concluded in Chapter 6, which summarizes the contributions and
discusses future research directions.

Much of the material presented in this thesis has been published in preliminary
and condensed form in the following papers:

• P. A. Boncz, S. Manegold, and M. L. Kersten. Database Architecture Optimized
for the New Bottleneck: Memory Access. InProceedings of the International
Conference on Very Large Data Bases (VLDB), pages 54–65, Edinburgh, Scot-
land, UK, September 1999.

The paper analyzes the impact of modern hardware trends on database query
performance. Exhaustive experiments on an SGI Origin2000 demonstrate that
main-memory access forms a significant bottleneck with traditional database
technology. Detailed analytical performance models are introduced to describe
the memory access costs of some join algorithms. The insights gained are trans-
lated into guidelines for future database architecture, in terms of both data struc-
tures and algorithms. We discuss how vertically fragmented data structures op-
timize cache performance on sequential data access. Further, we present new
radix algorithms for partitioned nested-loop- and hash-join. Detailed experi-
ments confirm that these hardware-conscious algorithms improve the join per-
formance by restricting random data access to the smallest cache size.

• S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing Database Architec-
ture for the New Bottleneck: Memory Access.The VLDB Journal, 9(3):231–
246, December 2000.

This extended version of the previous paper has been re-published in the ”Best-
of-VLDB 1999”collection. The paper provides a more detailed analysis of
main-memory access cost on core database algorithms. Analytical models are
presented that also cover the effects that occur due to CPU work and memory
access overlapping each other. Moreover, we present a revised version of our
partitioned hash-join algorithm. We found out that using perfect hashing instead
of aiming at an average hash-bucket size of 4 tuples, improved the performance
significantly by reducing the number of cache misses that occur while following
the collision list. With this improvement, partitioned hash-join became superior
to radix-join, which was faster in our initial experiments.

5Joint work with Peter Boncz; certain parts do overlap with parts of his Ph.D. thesis [Bon02].

20 1 Introduction

• S. Manegold, P. A. Boncz, and M. L. Kersten. What happens during a Join?
— Dissecting CPU and Memory Optimization Effects. InProceedings of the
International Conference on Very Large Data Bases (VLDB), pages 339–350,
Cairo, Egypt, September 2000.

In this paper, we show that CPU costs become distinctive, once memory ac-
cess is optimized as proposed in our previous work. Exhaustive experimenta-
tion on various hardware platforms indicates that conventional database code is
much too complex to be handled efficiently by modern high-performance CPUs.
In turns out that especially function calls and branches make the code unpre-
dictable for the CPU and thus hinder efficient use of the CPU internal parallel
resources. We propose new coding techniques that enable better exploitation of
the available resource. Experiments on various hardware platforms show that
optimizing memory access and CPU resource utilization support each other,
yielding a total performance improvement of up to an order of magnitude.

• S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing Main-Memory Join
On Modern Hardware.IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE), 14(4):709–730, July 2002.

This work discusses our work on analyzing, modeling, and improving memory
access and CPU costs in a broader context. We provide refined cost models
for our radix-based partitioned hash-join algorithms. Being parameterized by
architecture-specific characteristics such as cache sizes and cache miss penal-
ties, our models can be easily ported to various hardware platform. We intro-
duce a calibration tool to automatically measure the respective hardware param-
eters.

• S. Manegold, P. A. Boncz, and M. L. Kersten. Generic Database Cost Models
for Hierarchical Memory Systems. InProceedings of the International Confer-
ence on Very Large Data Bases (VLDB), pages 191–202, Hong Kong, China,
August 2002.

In this paper, we present a generalized framework for our cost models. We
provide a novel unified hardware model to describe performance relevant char-
acteristics of hierarchical memory systems, hardware caches, main-memory,
and secondary storage. Together with our calibration tool, this unified hard-
ware model allows automatic porting of our cost models to various hardware
platforms. To simplify the task of designing physical cost functions for various
database algorithms, we introduce the concept of data access patterns. The data
access behaviors of an algorithm is described in terms of simple combinations
of basic patterns such as “sequential access” or “random access”. From this
description, the detailed physical cost functions are derived automatically using
the rules we developed in this work. The resulting cost functions estimate the
number of accesses to each level of the memory hierarchy and score them with
their respective latency. Respecting the features of both disk drives and mod-
ern DRAM-chips, we distinguish different latencies for sequential access and
random access.

Chapter 2

Preliminaries

Models play a very important role in science and research. Usually, a model is seen
as an abstract image or description of a certain part of “the real world” that helps us to
analyze and/or better understand this part of the real world. As we saw in Chapter 1,
database systems rely on cost models to do efficient and effective query optimization.
In this chapter, we first discuss some fundamentals of cost models and informally
introduce the terminology we use throughout this thesis. Then, we briefly review the
role of database cost models in literature and discuss some approaches in more detail.
The last part of this chapter gives a concise overview of our main-memory DBMS
prototype Monet, which we use as implementation and validation platform throughout
this thesis.

2.1 Cost Models

We indicated in Chapter 1 that different execution plans require different amounts of
effort to be evaluated. The objective function for the query optimization problems
assigns every execution plan a single non-negative value. This value is commonly
referred to ascostsin the query optimization business.

2.1.1 Cost Components

In the Introduction, we mentioned already briefly that we consider cost models to be
made up of three components: logical costs, algorithmic costs, and physical costs. In
the following, we discuss these components in more detail.

2.1.1.1 Logical Costs/ Data Volume

The most important cost component is the amount of data that is to be processed.
Per operator, we distinguish three data volumes: input (per operand), output, and
temporary data. Data volumes are usually measured as cardinality, i.e., number of
tuples. Often, other units such as number of I/O blocks, number of memory pages, or

22 2 Preliminaries

total size in bytes are required. Provided that the respective tuple sizes, page sizes, and
block sizes are known, the cardinality can easily be transformed into the other units.

The amount of input data is given as follows: For the leaf nodes of the query
graph, i.e., those operations that directly access base tables stored in the database,
the input cardinality is given by the cardinality of the base table(s) accessed. For the
remaining (inner) nodes of the query graph, the input cardinality is given by the output
cardinality of the predecessor(s) in the query graph.

Estimating the output size of database operations — or more generally, theirse-
lectivity — is anything else but trivial. For this purpose, DBMSs usually maintain
statistic about the data stored in the database. Typical statistics are

• cardinality of each table,

• number of distinct values per column,

• highest/ lowest value per column (where applicable).

Logical cost functions use these statistics to estimate output sizes (respectively se-
lectivities) of database operations. The simplest approach is to assume that attribute
values are uniformly distributed over the attribute’s domain. Obviously, this assump-
tion virtually never holds for “real-life” data, and hence, estimations based on these
assumption will never be accurate. This is especially severe, as the estimation errors
compound exponentially throughout the query plan [IC91]. This shows, that more
accurate (but compact) statistics on data distributions (of base tables as well as inter-
mediate results) are required to estimate intermediate results sizes.

The importance of statistics management has led to a plethora of approxima-
tion techniques, for which [GM99] have coined the general term “data synopses”.
Such techniques range from advanced forms ofhistograms(most notably,V-optimal
histogramsincluding multidimensional variants) [Poo97, GMP97, JKM+98, IP99]
over spline synopses[KW99, KW00], sampling [CMN99, HNSS96, GM98], and
parametric curve-fitting techniques[SLRD93, CR94] all the way to highly sophis-
ticated methods based onkernel estimators[BKS99] orWaveletsand other transforms
[MVW98, VW99, LKC99, CGRS00].

A logical cost model is a prerequisite for the following two cost components. In
this work, we do not analyze logical cost models in more detail, but we assume that a
logical cost model is available.

2.1.1.2 Algorithmic Costs/ Complexity

Logical costs only depend on the data and the query (i.e., the operators’ semantics),
but they do not consider the algorithms used to implement the operators’ functionality.
Algorithmic costs extend logical costs by taking the properties of the algorithms into
account.

A first criterion is the algorithm’s complexity in the classical sense of complexity
theory. Most unary operator are inO(n), like selections, orO(n logn), like sorting;
n being the input cardinality. With proper support by access structures like indices

2.1 Cost Models 23

or hash tables, the complexity of selection may drop toO(logn) or O(1), respectively.
Binary operators can be inO(n), like a union of sets that does not eliminate duplicates,
or, more often, inO(n2), as for instance join operators.

More detailed algorithmic cost functions are used to estimate, e.g., the number
of I/O operations or the amount of main memory required. Though these functions
require some so-called “physical” information like I/O block sizes or memory pages
sizes, we still consider them algorithmic costs and not physical cost, as these informa-
tions are system specific, but not hardware specific. The standard database literature
provides a large variety of cost formulas for the most frequently used operators and
their algorithms. Usually, these formulas calculate the costs in term of I/O operations
as this still is the most common objective function for query optimization in database
systems. We refer the interested reader, e.g., to [KS91, EN94, AHV95, GMUW02].

2.1.1.3 Physical Costs/ Execution Time

Logical and algorithmic costs alone are not sufficient to do query optimization. For
example, consider two algorithms for the same operation, where the first algorithm
requires slightly more I/O operations than the second, while the second requires sig-
nificantly more CPU operations than the first one. Looking only at algorithmic costs,
both algorithms are not comparable. Even assuming that I/O operations are more ex-
pensive than CPU operations cannot in general answer the question which algorithm
is faster. The actual execution time of both algorithms depends on the speed of the
underlying hardware. The physical cost model combines the algorithmic cost model
with an abstract hardware description to derive the different cost factors in terms of
time, and hence the total execution time. A hardware description usually consists of
information such as CPU speed, I/O latency, I/O bandwidth, and network bandwidth.
The next section discusses physical cost factors on more detail.

2.1.2 Cost Factors

In principle, physical costs are considered to occur in two flavors,temporalandspa-
tial. Temporal costs cover all cost factors that can easily be related to execution time,
e.g., by multiplying the number of certain events with there respective cost in terms of
some time unit. Spatial costs contain resource consumptions that cannot directly (or
not at all) be related to time. In the following, we briefly describe the most prominent
cost factors of both categories.

2.1.2.1 Temporal Cost Factors

As indicated above, physical costs are highly related to hardware. Hence, it is only
natural that we distinguish different temporal cost factors according to the respective
hardware components involved.

Disk-I /O This is the cost of searching for, reading, and writing data blocks that
reside on secondary storage, mainly on disk. In addition to accessing the database

24 2 Preliminaries

files themselves, temporary intermediate files that are too large to fit in main memory
buffers and hence are stored on disk also need to be accessed. The cost of searching for
records in a database file or a temporary file depends on the type of access structures
on that file, such as ordering, hashing, and primary or secondary indexes. I/O costs are
either simply measured in terms of the number of block-I/O operations, or in terms
of the time required to perform these operations. In the latter case, the number of
block-I/O operations is multiplied by the time it takes to perform a single block-I/O
operation. The time to perform a single block-I/O operation is made up by an initial
seek time (I /O latency) and the time to actually transfer the data block (i.e., block
size divided byI /O bandwidth). Factors such as whether the file blocks are allocated
contiguously on the same disk cylinder or scattered across the disk affect the access
cost. In the first case (also calledsequential I/O), I/O latency has to be counted only
for the first of a sequence of subsequent I/O operations. In the second case (random
I /O), seek time has to be counted for each I/O operation, as the disk heads have to be
repositioned each time.

Main-Memory Access These are the costs for reading data from or writing data to
main memory. Such data may be intermediate results or any other temporary data
produced/used while performing database operations.

Traditionally, memory access costs were ignored in database systems. The reason
for this was, that they were completely overshadowed by the dominating I/O costs in
disk-base systems. As opposed to I/O costs, memory access cost were considered uni-
form, i.e., independent of both the physical locality and the physical order of accesses.
This assumption was mainly true on the hardware in the 80’s. Hence, main-memory
DBMSs considered memory access costs to be included in the CPU costs.

In this thesis, we demonstrate that due to recent hardware trends, memory access
costs have become a highly significant cost factor. Furthermore, we show that memory
access on modern hierarchical memory systems depicts similar cost-related character-
istics as I/O, i.e., we need to consider both latency and bandwidth, and we need to
distinguish between sequential and random access patterns.

Network Communication In centralized DBMSs, communication costs cover the
costs of shipping the query from the client to the server and the query’s result back
to the client. In distributed, federated, and parallel DBMSs, communication costs
additionally contain all costs for shipping (sub-)queries and/or (intermediate) results
between the different hosts that are involved in evaluating the query.

Also with communication costs, we have a latency component, i.e., a delay to
initiate a network connection and package transfer, and a bandwidth component, i.e.,
the amount of data that can be transfer through the network infrastructure per time.

CPU Processing This is the cost of performing operations such as computations
on attribute values, evaluating predicates, searching and sorting tuples, and merging
tuples for join. CPU costs are measured in either CPU cycles or time. When using
CPU cycles, the time may be calculated by simply dividing the number of cycles by

2.1 Cost Models 25

the CPU’s clock speed. While allowing limited portability between CPUs of the same
kind, but with different clock speeds, portability to different types of CPUs is usually
not given. The reason is, that the same basic operations like adding two integers might
require different amounts of CPU cycles on different types of CPUs.

Traditionally, CPU costs also cover the costs for accessing the respective data
stored in main memory. However, we treat memory access costs separately.

Summarizing, we see that temporal cost are either caused by data access and/or data
transfer (I/O, memory access, communication), or by data processing (CPU work).

2.1.2.2 Spatial Cost Factors

Usually, there is only one spatial cost factor considered in database literature:memory
size. This cost it the amount of main memory required to store intermediate results or
any other temporary data produced/used while performing database operations.

Next to not (directly) being related to execution time, there is another difference
between temporal and spatial costs that stems from the way they share the respective
resources. A simple example shall demonstrate the differences. Consider to opera-
tions or processes each of which consumes 50% of the available resources (i.e., CPU
power, I/O-, memory-, and network bandwidth). Further, assume that when run one
at a time, both tasks have equal execution time. Running both tasks concurrently on
the same system (ideally) results in the same execution time, now consuming all the
available resources. In case each individual process consumes 100% of the available
resources, the concurrent execution time will be twice the individual execution time.
In other words, if the combined resource consumption of concurrent tasks exceed
100%, the execution time extends to accomodate the excess resource requirements.
With spatial cost factors, however, such “stretching” is not possible. In case two tasks
together would require more than 100% of the available memory, they simply cannot
be executed at the same time, but only after another.

2.1.3 Types of (Cost) Models

According to their degree of abstraction, (cost) models can be classified into two
classes:analytical modelsandsimulation models.

Analytical Models In some cases, the assumptions made about the real system can
be translated into mathematical descriptions of the system under study. Hence, the
result is a set of mathematical formulas. We call this an analytical model. The advan-
tage of an analytical model is that evaluation is rather easy and hence fast. However,
analytical models are usually not very detailed (and hence not very accurate). In order
to translate them into a mathematical description, the assumptions made have to be
rather general, yielding a rather high degree of abstraction.

26 2 Preliminaries

Simulation Models Simulation models provide a very detailed and hence rather
accurate description of the system. They describe the system in terms of (a) simulation
experiment(s) (e.g., using event simulation). The high degree of accuracy is charged
at the expense of evaluation performance. It usually takes relatively long to evaluate
a simulation base model, i.e., to actually perform the simulation experiment(s). It is
not uncommon, that the simulation actually takes longer than the execution in the real
system would take.

Simulation models are usually used in scenarios where a very detailed analysis as
close as possible to the real system is required, but the actual system in not (yet) avail-
able. The most prominent example is processor development. The design of new
CPUs is evaluated via exhaustive simulation experiments, first, to ensure the correct-
ness and analyze the (expected) performance. The reason is, that producing functional
prototypes in an early stage of the development process would be to expensive.

In database query optimization, though it would appreciate the accuracy, simula-
tion models are not feasible, as the evaluation effort is far to high. Query optimization
requires that costs of numerous alternatives are evaluated and compared as fast as
possible. Hence, only analytical cost models are applicable in this scenario.

2.1.4 Architecture and Evaluation of Database Cost Models

The architecture and evaluation mechanism of database cost models is tightly coupled
to the structure of query execution plans. Due to the strong encapsulation offered by
relational algebra operators, the cost of each operator, respectively each algorithm,
can be described individually. For this purpose, each algorithm is assigned a set of
cost functionsthat calculate the three cost components as described above. Obviously,
the physical cost functions depend on the algorithmic cost functions, which in turn
depend on the logical cost functions. Algebraic cost functions use the data volume
estimations of the logical cost functions as input parameters. Physical cost functions
are usually specializations of algorithmic cost functions that are parameterized by the
hardware characteristics.

The cost model also defines how the single operator costs within a query have to
be combined to calculate the total costs of the query. In traditional sequential DBMSs,
the single operators are assumed to have no performance side-effects on each other.
Thus, the cost of a QEP is the cumulative cost of the operators in the QEP [SAC+79].
Since every operator in the QEP is the root of a sub-plan, its cost includes the cost of
its input operators. Hence, the cost of a QEP is the cost of the topmost operator in
the QEP. Likewise, the cardinality of an operator is derived from the cardinalities of
its inputs, and the cardinality of the topmost operator represents the cardinality of the
query result.

In non-sequential (e.g., distributed or parallel) DBMSs, this subject is much more
complicated, as more issues such as scheduling, concurrency, resource contention,
and data dependencies have to considered. For instance, in such environments, more
than one operator may be executed at a time, either on disjoint (hardware) resources,
or (partly) sharing resources. In the first case, the total cost (in terms of time) is

2.2 Logical Cost Models / Estimation 27

calculated as the maximum of the costs (execution times) of all operators running
concurrently. In the second case, the operators compete for the same resources, and
hence mutually influence their performance and costs. More sophisticated cost func-
tion and cost models are required here to adequately model this resource contention
[LTS90, LST91, SE93, SYT93, LVZ93, ZZBS93, SHV96, SF96, GHK92].

2.2 Logical Cost Models/ Estimation

Most DBMSs make certain assumptions on the underlying data in order to perform
inexpensive estimations. Christodoulakis studied the implications of various common
assumptions on the performance of databases [Chr83, Chr84]. The main set of as-
sumptions studied by him are:

Uniformity of attribute values: All possible values of an attribute have the same fre-
quency in the data distribution.

Attribute Independence: The data distributions of all attributes in a relation are in-
dependent of each other.

Uniformity of queries: Queries refer attribute values with equal frequencies.

Constant number of records per block: Each block of the file contains the same
number of tuples.

Random placement: Each record of the file has the same probability to qualify in a
query, regardless of its placement among the pages of secondary storage.

He also showed that the expected cost of a query estimated using these assump-
tions is an upper bound on the actual expected cost. He demonstrated that existing
systems using these assumptions tend to utilize expensive query evaluation strategies
and that non-uniformity, non-independence, and non-random placement could be ex-
ploited in database design in order to reduce the system cost. In addition to providing
such extensive motivation for better estimation techniques, his work also pioneered
in the usage of several mathematical techniques such asSchur concavity[MO79] in
database performance evaluation.

The System-R optimizer, assumed that the underlying data is uniform and inde-
pendent ([SAC+79]). As a result, only the number of tuples and the lowest and highest
values in each attribute are stored in the system catalogs, and it is assumed that all
possible values between the two extremes occur with the same probability. Hence,
very few resources are required to compute, maintain, and use these statistics. In
practice, though, these assumptions rarely hold because most data tends to be non-
uniform and has dependencies. Hence, the resulting estimates are often inaccurate.
This was formally verified in the context of query result size estimation by Ioannidis
and Christodoulakis in [IC91]. In their work they proved that the worst case errors
incurred by the uniformity assumption propagate exponentially as the number of joins
in the query increases. As a result, except for very small queries, errors may become

28 2 Preliminaries

extremely high, resulting in inaccurate estimates for result sizes and hence for the
execution costs.

Several techniques have been proposed in the literature to estimate query result
sizes, most of them contained in the extensive survey by Mannino, Chu, and Sager
[MCS88]. The broad classes of various estimation techniques are described in the
following sections.

2.2.1 Sampling-based Techniques

These techniques compute their estimates by collecting and processing random sam-
ples of the data, typically at query optimization time. There has been considerable
amount of work done in sampling-based techniques for result size estimation [Ant92,
ASW87, CMN99, GGMS96, HNSS96, HS92, HS95, LNS90, SN92, OR86, LS95].
Since these techniques do not rely on any precomputed information about the data,
they are not affected by database updates and do not incur storage overheads. Another
advantage of these techniques is their probabilistic guarantees on the accuracy of the
estimates. Some of the undesirable properties of the sampling-based techniques are:
(1) they incur disk I/Os and CPU overheads during query optimization, and (2) the
information gathered is not preserved across queries and hence these techniques may
incur the costs repetitively. When a quantity needs to be estimated once and with high
accuracy in the presence of updates, the sampling technique works very well (e.g., by
a query profiler). To overcome point (2), techniques for incremental maintenance of
random samples have been developed in recent works [GMP97, GM98].

Another weak point of sampling is that the relations which are to be sampled
have to be available. In other words, sampling can only be applied to base table or
completely calculated intermediate results. Propagating samples through the operators
of a complex query is generally not possible, especially with joins. These problems
have been analyzed in detail in [CMN99, AGPR99, GGMS96].

2.2.2 Parametric Techniques

These techniques approximate the actual data distribution by a parameterized mathe-
matical distribution, such as the uniform distribution [SAC+79], multivariate normal
distributions or Zipf distributions [Chr83]. The parameters for these distributions are
obtained from the actual data distributions, and the accuracy of this approximation
depends heavily on the similarity between the actual and parameterized distributions.
The main advantage of this approach is the small storage overhead involved and the
insignificant run-time costs. On the other hand, real data often does not resemble any
simple mathematical distribution and hence such estimations may cause inaccuracies
in estimates. Also, since the parameters are precomputed, this approach may incur
additional errors if the database is updated significantly. Variants of this approach
are thealgebraictechniques, where the actual data distribution is approximated by a
polynomial function. The coefficients of this function are determined using regres-
sion techniques [SLRD93]. A promising algebraic technique was proposed calling for

2.2 Logical Cost Models / Estimation 29

adaptively approximating the distribution by a six-degree polynomial, whose coeffi-
cients are varied dynamically based on query feedback [CR94]. Some of the problems
associated with the algebraic techniques are the difficulties in choosing the degree of
the polynomial function and uniformly handling result size estimates for operators
other than simple selection predicates. On the other hand, the positive results ob-
tained in the work of Wei Sun et al. [SLRD93] on algebraic techniques indicates their
potential applicability.

2.2.3 Probabilistic Counting Techniques

These techniques have been applied in the contexts of estimating the number of unique
values in the result of projecting a relation over a subset of attributes ([GG82, FM85,
SDNR96]). The technique for estimating the number of distinct values in a multi-
set, proposed by Flajolet and Martin [FM85] makes an estimate during a single pass
through the data and uses a small amount of fixed storage. Shukla et al. applied this
technique in estimating the size of multidimensional projections (the cube operator)
[SDNR96]. Their experiments have shown that these techniques can provide more
reliable and accurate estimates than the sampling-based techniques [SDNR96]. The
applicability of these techniques to other operators is still an open issue.

2.2.4 Non-parametric (Histogram-based) Techniques

These techniques approximate the underlying data distribution using precomputed tab-
ular information (histograms). They are probably the most common techniques used in
practice (e.g., they are used in DB2, Informix, Ingres, Microsoft SQL-Server, Oracle,
Sybase, Teradata). Since they are precomputed, they may incur errors in estimation if
the database is updated and hence require regular re-computation.

Most of the work on histograms is in the context of single operations, primar-
ily selections. Specifically, Piatetsky-Shapiro and Connell dealt with the effect of
histograms on reducing the error for selection queries [PSC84]. They studied two
classes of histograms:equi-widthhistograms andequi-depth(or equi-height) his-
togram [Koo80]. Their main result showed that equi-width histograms have a much
higher worst-case and average errors for a variety of selection queries than equi-depth
histograms. Muralikrishna and DeWitt [MD88] studied techniques for computing and
using multi-dimensional equi-depth histograms. By building histograms on multi-
ple attributes together, their techniques were able to capture dependencies between
those attributes. Several other researchers have dealt with ”variable-width”histograms
for selection queries, where the buckets are chosen based on various criteria [Koo80,
KK85, MK88]. Kooi’s thesis [Koo80] contains extensive information on using his-
tograms inside an optimizer for general queries and the concept of variable-width
histograms. The survey by Mannino, Chu, and Sager [MCS88] contains various refer-
ences to work in the area of statistics on choosing the appropriate number of buckets
in a histogram for sufficient error reduction. That work deals primarily with selections
as well. Histograms for single-join queries have been minimally studied and then
again without emphasis on optimality [Chr83, Koo80, MK88]. Probably the earliest

30 2 Preliminaries

efforts at studying optimality of histograms for result size estimation of join operators
are those of Ioannidis and Christodoulakis [IC93, Ioa93]. They introduce two new
classes of histograms,serial andend-biasedhistograms, and show that certain types
of these classes, so calledV-optimal(F,F)histograms, are optimal for worst-case er-
rors of tree equality-join and selection queries. Practicality issues in computing the
optimal histograms were not addressed in their work.

Some of the limitations of earlier work on histograms are as follows. First, they
were mostly restricted to estimating the result sizes of a few operators such as se-
lections and equi-joins. Second, barring the study by Ioannidis and Christodoulakis,
most of the earlier work on histograms has been empirical in nature with almost no
effort to identify optimal histograms. Finally, the computation techniques for the new
classes of histograms proposed by [Ioa93] were too expensive to be of use in prac-
tice. Also, being restricted to predicates on single attributes, most of the earlier work
on histograms did not deal with the effects of correlation between attributes from the
same relation. Some of the work that did consider multiple attributes together [Ioa93]
assumes that multi-dimensional histograms can be built in practice, but do not fully
explore the practicality issues involved.

The work by Ioannidis and Poosala [IP95] marks probably the first effort to find a
compromise between optimality and practicality of histograms. The work is continued
and extended in [PIHS96] and [JKM+98].

There is lots of on-going work on and around the use of histograms in database
query evaluation. Some recent issues are new techniques how to construct and main-
tain histograms efficiently [GMP97, CMN98, MVW98, AC99], and the use of his-
tograms for approximate query answering [PGI99].

2.3 I/O-based Cost Models

Physical cost functions belong to the core of proprietary code of a database vendor.
Their design, accurate tuning, and alignment with all other database components re-
quires high level of expertise and knowledge of both hardware and database compo-
nents. Hence, the vendors keep their physical cost functions as precious secrets.

Early work on System-R [SAC+79] uses a cost function balancing both factors
I/O and CPU using a constant weight, a factor difficult to determine in practice. More-
over, given the discrepancy in I/O and CPU cost granularity, i.e., microseconds versus
milliseconds, the former has become the prime factor in choosing a query execution
plan.

A subsequent study on System-R* [ML86] identified that in addition to the physi-
cal and statistical properties of the input data streams and the computation of selectiv-
ity, modeling buffer utilization plays a key role in accurate estimation. This requires
using different buffer pool hit ratios depending on the levels of indexes as well as
adjusting buffer utilization by taking into account properties of join methods, e.g., a
relatively pronounced locality of reference in an index scan for indexed nested loop
join [GLSW93].

With I/O being the dominant cost factor, database research has developed various

2.4 Main-Memory Cost Models 31

techniques to reduce the number of I/O operations needed to answer a query. Two
of the most prominent of these techniques are in-memory buffers to cache frequently
access pages of the database relations and indices to access a fraction of a table, e.g.,
as requested by a selection predicate, without the need to scan the whole table. While
significantly improving database performance, these techniques make cost estimation
more complicated, and it becomes more difficult to predict the exact number of I/O
operations that will be needed to answer a query. A number of research works has been
devoted to analyzing and predicting the impact of indices, buffer pools, and various
buffer replacement strategies on the number of I/O operations, e.g., [CD85, SS86,
Sac87, ML89, CS89, DYC95].

Numerous further I/O-based cost models appear in a database literature. However,
in most cases, the cost models themselves a not the (primary) subject. Rather, they
are just presented as necessary tools for query optimization. Though sharing some
commonalities, most physical cost models are specific for the respective DBMS, its
architecture, algorithms, data structures, and the hardware platform it runs on.

2.4 Main-Memory Cost Models

Relatively little work has been done on modeling of the performance cost of main-
memory DBMSs (MM-DBMSs). Early work on the design of database machines
provides hints on the interdependencies of algorithms and memory access [Ozk86,
Su88, BF89], but this research track has long been abandoned. This can partly be
attributed to a lack of need, as use of MM-DBMS techniques have since been restricted
to areas like real-time database systems (e.g., telecom switching, financial trading) that
required relatively simple queries; say a hash-lookup in a single table.

In recent database literature, mainly the work around two research prototypes,
IBM’s office-by-example(OBE) and HP’sSmallbase, has dealt with the issue of query
optimization and cost modeling in main-memory environments.

2.4.1 Office-By-Example (OBE)

Whang and Krishnamurthy [WK90] discuss query optimization techniques applied
in IBM’s research prototype office-by-example (OBE). OBE is a memory-resident
domain relational calculus database system that extends the concepts ofquery-by-
example(QBE). To enable cost-based query optimization, they present a complete cost
model. Due to the assumption that the data being processed is resident in main mem-
ory, the traditional database cost factor, I/O access, becomes obsolete. Rather, CPU
computation cost now becomes dominant. Modeling CPU costs, however, is very dif-
ficult as too many parameters, like the software design, the hardware architecture, and
even programming styles, may affect the CPU computation costs. A detailed analysis
of larger systems to count the CPU cycles is virtually impossible. The solution that
Whang and Krishnamurthy propose is to use an approach using both experimental
and analytical methods. First, they identify the system’sbottlenecksusing an execu-
tion analyzer/ profiler. Only bottlenecks will be used to model the system’s CPU cost.

32 2 Preliminaries

To prevent the cost model from drifting frequently due to changes in the program, the
bottlenecks are improved as much as possible with reasonable effort. The next step is
then to find, by experiments,relative weightsof different bottlenecks and to determine
their unit costs. Finally, they develop comprehensive cost formulas based on these
unit costs.

For OBE, Whang and Krishnamurthy identified the following bottlenecks and
measured the respective unit costs:

1. evaluating the expressions involved in predicates (unit cost= C1);

2. comparison operations needed to finally determine the outcome of predicates
(unit cost= C4);

3. retrieving a tuple from a (memory-resident) relation (unit cost= C3);

4. unit operation in creating an index (creating an index on a relation ofn tuples
takesn log2n such unit operations; unit cost= C4);

5. unit operation in the sorting needed to prepare a multi-column index (unit cost
= C5).

The most interesting result of their experiments was that evaluating expressions in
predicates turned out to be by far the most expensive operation in OBE. WhileC2

throughC5 are of approximately the same order,C1 exceeds them by approximately
an order of magnitude.

2.4.2 Smallbase

Listgarten and Neimat [LN96, LN97] classify main-memory cost models into three
categories:

hardware-based A hardware-basedcost model is constructed analogously to tradi-
tional I/O-based cost models. Instead of counting I/O operations, now CPU
cycles are counted. While conceptually simple, this approach is difficult to im-
plement. In addition to the problems mentioned in [WK90], Listgarten and
Neimat point out that hardware policies like cache-replacement or pre-fetching
need to be incorporated, which are hard to model. Further, portability would
be very limited, as such policies vary between hardware architectures. How-
ever, once constructed, a hardware-based model is believed to be accurate and
reliable.

application-based This second category matches the approach presented in [WK90]:
costs are expressed in terms of a system’s bottleneck costs. While being simpler
to develop than hardware-based cost models,application-basedcost models are
less general. The bottlenecks found highly depend on the workload used to
identify them, and hence may not sufficiently represent the costs of all types of
queries. In principle, application-based models are easier to port than hardware-
based models, by simply regenerating the profiles. However, this might not only

2.4 Main-Memory Cost Models 33

result in different unit costs, but also in a different set of bottlenecks. In this case,
the model itself changes, not just the instantiation, and hence the cost functions
of all database operations need to be re-formulated in terms of the new set of
bottlenecks.

engine-basedThe third type of cost models is a compromise between detailed but
complex hardware-based models and simple but less general application-based
models. Anengine-basedcost model is based on the costs of primitive opera-
tions provided by the (MM-)DBMS’s execution engine.

Listgarten and Neimat propose a two-step process to construct engine-based cost mod-
els. First, the general model is created by identifying the base costs and expressing
query processing costs in terms of these building blocks. Second, the model is instan-
tiated by determining the relative values for the base costs, and then verified.

Step one requires detailed knowledge about the internals of the execution engine
and is usually to be done by hand. In case of doubt about how detailed the model
should be, they propose to make it as detailed as practically feasible. Simplifications
or further refinements can be done during verification. For their Smallbase system,
Listgarten and Neimat identified the following primitive costs:

• fetching a column or parameter value

• performing arithmetic operations

• performing boolean operations

• evaluating a comparison

• evaluating a like expression

• scanning a table, T-tree index, hash index, temporary table

• creating/destroying a T-tree index, hash index, temporary table

• sorting tuples

• selecting distinct tuples

• performing a join (nested loop join, merge join)

Dependencies of these costs on factors like tables size, data type, etc. are dealt with
during the second step.

Step two is automated by developing a cost test program that instantiates and ver-
ifies the model. For each unit costs, two queries are provided whose execution costs
differ in only that value (plus maybe further cost that are already known). Further,
formulas that specify the dependency of each unit cost on the table size have to be
specified. The cost test program than finds the respective parameters and verifies the
model by running each pair of queries several times with varying table sizes and per-
forming a least square regression on the difference in execution time of the pairing
queries.

34 2 Preliminaries

2.4.3 Remarks

The work described above, as well as other recent work on main-memory query op-
timization [LC86b, PKK+98], models the main-memory costs of query processing
operators on the coarse level of procedure calls, using profiling to obtain some ’magi-
cal’ constants. As such, these models do not provide insight in individual components
that make up query costs, limiting their predictive value.

2.5 Cost Models for (Heterogeneous) Federated and
Multi-Database Systems

From a cost modeling perspective, classical sequential, parallel, and distributed data-
base management systems share the property that the whole system is developed by
the same vendor. Hence, those developers in charge of the query optimizer have access
to all specification details and the source code of the execution engine. Thus, they
can exploit this detailed insight when designing cost models for query optimization.
However, when it comes to global query optimization in heterogeneous federated and
multi-database systems, the picture looks differently. Usually, the individual DBMSs
gathered in such systems are off-the-shelf products made by one or more different
vendors. This means that no detailed knowledge about these systems is available to
the vendor of the federated/multi-DBMS. The participating DBMSs have to be treated
as “black boxes”, and thus, new techniques are required to acquire proper cost models
for global query optimization. The following sections briefly present some approaches
published in resent database literature.

2.5.1 Calibration

Pegasus Du, Krishnamurthy, and Shan [DKS92] propose a calibration-based ap-
proach to obtain cost models for the participating DBMSs. The costs of basic opera-
tors — such as sequential scan, index scan, index lookup, different join algorithms —
are modeled as rather generic formulas. The cost of a sequential scan over a relation
Revaluating a predicateP, e.g., is given as:

Cseqscan(R,P) = c0 + c1 · ||R|| + c2 · ||R|| · s(P)

with
||R||: the number of tuples in relation R
s(P): the selectivity of predicate P
c0: the initialization cost for the select
c1: the cost to retrieve a single tuple and to evaluate P on it
c2: the cost to process a result tuple satisfying P

The authors assume, that statistical information about the data stored in the par-
ticipating DBMSs as well as a (global) logical cost model to derive selectivity factors
and intermediate result sizes are available.

2.5 Cost Models for Federated and Multi-Database Systems 35

The coefficientsc0, c1, andc2 are assumed to be functions depending on param-
eters such as data types, tuple sizes, number of clauses in a predicate, etc. (where
appropriate). Further, costs are measured in elapsed time, and cover I/O as well as
CPU costs.

In order to calibrate the respective coefficients for a given “black box” database
system, the authors designed a special synthetic database and a set of queries whose
run times are measured. The major problem that arises here, is that the whole cali-
bration process has to be predictable. For instance, calibration does not make sense,
if one does not know how the system will execute a given query (e.g., using which
algorithm and which index, if any). Further, effects related to data placement, pagi-
nating, etc. have to be eliminated. The presented database and query set take care of
these issues. Experiments with AllBase, DB2, and Informix show, that the proposed
process derives quite accurate cost models in 80% of the cases.

IRO-DB Gardarin, Sha, and Tang [GST96] extend the calibration approach of Du,
Krishnamurthy, and Shan [DKS92] for the object-oriented federated database system
IRO-DB [GFF97]. The major extension required was to introduce a path traversal
(“pointer-chasing”) operator and the respective cost formula. Further, cost parameters
such as object size, collection size, projection size, and fan out needed to be regarded.
Also, the calibration database and the query set are extended to meet the requirements
of an object-oriented environment.

2.5.2 Sampling

Zhu and Larson [ZL94, ZL96, ZL98] propose a query sampling method. The key idea
is as follows. It first groups local queries that can be performed on a local DBS in an
MDBS into homogeneous classes, based on some information available at the global
level in an MDBS such as the characteristics of queries, operand tables and the under-
lying local DBS. A sample of queries are then drawn from each query class and run
against the user local database. The costs of sample queries are used to derive a cost
model for each query class by multiple regression analysis. The cost model parame-
ters are kept in the MDBS catalog and utilized during query optimization. To estimate
the cost of a local query, the class to which the query belongs is first identified. The
corresponding cost model is retrieved from the catalog and used to estimate the cost
of the query. Based on the estimated local costs, the global query optimizer chooses a
good execution plan for a global query.

2.5.3 Cost Vector Database

HERMES Adali, Candan, Papakonstantinou, and Subrahmanian [ACPS96] suggest
to maintain a cost vector database to record cost information for every query issued to
a local DBS. Cost estimation for a new query is based on the costs of similar queries.
For each call to a local DBS, the cost vector registers the time to compute the first
answer, the time to compute all the answer, the cardinality of the answer, and the type
of predicates to which these values correspond to. Summary table are also generated

36 2 Preliminaries

off-line to avoid heavy burden on storage. To estimate the costs of a new sub-query,
the sub-query is matched against the cost vector database and a kind of regression is
applied. The approach is demonstrated as efficient for sources queried with similar
sub-queries.

2.6 Main Memory Database Systems

During the mid-1980s falling DRAM prices seemed to suggest that future computers
would have such huge main memories that most databases could entirely be stored in
them. In such situations, it would be possible to eliminate all (expensive) I/O from
DBMS processing. This seriously changes the architecture for a DBMS, as in a Main
Memory DBMS (MMDBMS) there is no central role for I/O management.

An important question in a MMDBMS is how to do transactions and recovery in
an efficient way. Some of the proposed algorithms [LC86b, Eic87], assume that a
(small) stable subset of the main memory exists, a piece of memory whose content
will not be lost in a power outage through a battery backup. These stable memories
can be used to place, e.g., a redo log. Others do not assume stable memories, and still
use I/O to write transaction information to stable storage. These algorithms hence do
not eliminate I/O (e.g., “logical logging” [JSS93]), but minimize it, as the critical path
in a MMDBMS transaction only needs to write the log; not data pages from the buffer
manager.

The main asset of a MMDBMS is its unparalleled speed for querying and update.
Information on design and implementation of basic database data structures and al-
gorithms can be found in the overviews by Garcia-Molina and Salem [GMS92] and
Eich [Eic89]. Some specific research has been done in index structures for main mem-
ory lookup [Ker89, LC86a, DKO+84, AP92]. It turns out, that simple data structures
like the binary AVL tree, called T-Tree, and simple bucket-chained hash outperform
bread-and-butter disk-based structures like B-tree and linear hash, due to the fact that
the only costs involved in index lookup and maintenance are CPU and memory access.

A specific problem in MMDBMS is query optimization. The lack of I/O as dom-
inant cost factor means that it is much more difficult in a MMDBMS to model query
costs, as they depend on fuzzy factors like CPU execution cost of a routine. There-
fore, DBMS query optimization tends to make use of simple cost models that contain
“hard” constants obtained by profiling [LN96, WK90]. One challenge in this area is to
model the interaction between coding style, hardware factors like CPU and memory
architecture and query parameters into a reliable prediction of main memory execution
cost.

The end of popularity of MMDBMS techniques came in the early 1990s, when
it became clear that not only DRAM sizes had grown, but also disk size, and prob-
lem sizes. MMDBMS were thereafter only considered of specific interest to real-
time database applications, like, e.g., encountered in embedded systems or telephone
switches. Still, main memory sizes in commodity computers continue to increase, and
for those application areas whose problem sizes do not grow as fast, it holds that at a
certain time they will fit in main memory. Recently, prominent database researchers

2.7 Monet 37

concluded in the Asilomar workshop [BBC+98] that MMDBMSs have an important
future in such application areas.

Well known main memory systems are Smallbase [BHK+86, LN96] developed
by HP, the object-oriented AMOS [FR97] system, the parallel MMDBMS PRISMA
[AvdBF+92], and Daĺı [JLR+94, RBP+98] by Bell Labs. Smallbase and Dalı́ have
been reshaped into commercial products, under the names Times Ten [Tea99] and Dat-
aBlitz [BBG+99], respectively. Their main focus is highly efficient support of OLTP
DBMS functionality on small or medium-size data sets. Also, all main relational ven-
dors (IBM, Microsoft, Oracle) are offering small-footprint “ultra-light” versions of
their DBMS servers for use in mobile computing devices and web PDAs.

2.7 Monet

Our research goals as specified in Section 1.4 require a “real” DBMS to conduct em-
pirical analysis and experimental validation. In principal, there are three options:

1. use a commercial main-memory DBMS, e.g.,Times-Ten[Tea99], orDataBlitz
[BBG+98, BBG+99];

2. use a fully-fledged commercial disk-based DBMS, such as IBM’s DB2, Mi-
crosoft’s SQL-Server, or Oracle;

3. use a main-memory DBMS research prototype with accessible source code, e.g.,
our ownMonetsystem.

For this work, we consider the third option to be the most practical. Mainly the
fact that we know the internal architectural details and the source code helps us to
understand how the complex interaction between database software, compilers, op-
eration system, and hardware does work. We can easily play around with compiler
switches and add profiling hooks to gain the necessary insight for our modeling plan.
Moreover, it is only the ability to modify data structures, algorithms, and coding tech-
niques that enables us to validate the new techniques we propose. In this section, we
give a concise introduction to Monet, focusing on the core features that are important
in the given context. For an complete description of Monet, the interested reader is
referred to [Bon02].

2.7.1 Design

Monet is a main-memory database kernel developed at CWI since 1994 [BK95], and
commercially deployed in a Data Mining tool [KSHK97]. It is targeted at achieving
high performance onquery-intensiveworkloads, such as created byon-line analytical
processing(OLAP) or data miningapplications. Monet uses theDecomposed Storage
Model (DSM) [CK85], storing each column of a relational table in a separate binary
table, called aBinary Association Table(BAT). A BAT is represented in memory as an
array of fixed-size two-field records [OID,value], orBinary UNits(BUN). The OIDs
in the left column are unique per original relational tuple, i.e., they link all BUNs that

38 2 Preliminaries

[char]
gender

[int]
age

[str]
marital

f
m
f
f

18
66
83
25

single
married
widowed
divorced

[bool]
reliable

0
1
1
1

...

...

SQL: wide relational table

C_reliable
[OID] [bit]

00
01
02
03

0
1
1
1

...
[OID] [str]

C_marital

00
01
02
03

single
married
widowed
mrried

C_age
[OID] [int]

00
01
02
03

18
66
83
25

C_gender
[chr][OID]

f
m
f
f

00
01
02
03

Monet: Binary Association Tables (BATs)

Figure 2.1: Vertically Decomposed Storage in BATs

make up an original relational tuple (cf., Figure 2.1). The major advantage of the DSM
is that it minimizes I/O and memory access costs for column-wise data access, which
occurs frequently in OLAP and data mining workloads [BRK98, BMK99, MBK02].
The BAT data structure is maintained as a dense memory array, without wasted space
for unused slots, both in order to speed up data access (e.g., not having to check for
free slots) and because all data in the array is used, which optimizes memory cache
utilization on sequential access.

Most commercial relational DBMSs were designed in a time when OLTP was the
dominant DBMS application, hence their storage structures, buffer management in-
frastructure, and core query processing algorithms remain optimized toward OLTP.
In the architecture of Monet, we took great care that systems facilities that are only
needed by OLTP queries do not slow down the performance of query-intensive appli-
cations. We shortly discuss two such facilities in more detail: buffer management and
lock management.

Buffer management in Monet is done on the coarse level of a BAT (it is entirely
loaded or not at all), hence the query operators always have direct access to the entire
relation in memory. The first reason for this strategy is to eliminate buffer management
as a source of overhead inside the query processing algorithms, which would result
if each operator must continuously make calls to the buffer manager asking for more
tuples, typically followed by copying of tuple data into the query operator. The second
reason is that all-or-nothing I/O is much more efficient nowadays than random I/O
(similarly to memory, I/O bandwidth follows Moore’s law [Moo65], I/O latency does
not).

2.7 Monet 39

In Monet, we chose to implement explicit transaction facilities, which provide the
building blocks for ACID transaction systems, instead of implicitly building in trans-
action management into the buffer management. Monet applications use the explicit
locking primitives to implement a transaction protocol. In OLAP and data mining,
a simple transaction protocol with a very coarse level of locking is typically suffi-
cient (a read/write lock on the database or table level). We can safely assume that all
applications adhere to this, as Monet clients are front-end programs (e.g., an SQL in-
terpreter, or a data mining tool) rather than end-users. The important distinction from
other systems is hence that Monet separates lock management from its query services,
eliminating all locking overhead inside the query operators.

As a result, a sequential scan over a BAT comes down to a very simple loop over a
memory array with fixed-length records, which makes Monet’s query operator imple-
mentations look very much like scientific programs doing matrix computations. Such
code is highly suitable for optimization by aggressive compiler techniques, and does
not suffer from interference with other parts of the system. In other words, Monet’s al-
gorithms are implemented directly on the physical storage structures, i.e., without any
intermediate storage management layer. Thus it becomes feasible (1) to understand,
how the algorithms, respectively their implementations, interact with the underlying
hardware, and (2) to accurately model the algorithms’ cost in detail.

2.7.2 Architecture and Implementation

Monet is designed as a MMDBMS kernel providing core database functionality and
acting as a back-end for various front-end applications. The user-interfaces are pro-
vided via the front-end applications. Sample applications are among others an SQL
front-end, an ODMG front-end, as well as OLAP and data mining tools. For com-
munication between the front-end and the back-end, Monet provides an intermediate
query language calledMonet Interpreter Language(MIL) [BK99]. The core of MIL
is made up by primitives that form aBAT-algebrasimilar to the relational algebra.
Around this core, MIL has been developed as a computational complete procedu-
ral language giving full access to Monet’s core functionality. Further characteristics
of MIL are that (1) MIL programs are interpreted and (2) MIL operators are evalu-
ated one at a time. The latter means that query evaluation in Monet follows abulk-
processingapproach. As opposed topipelining, this means that all intermediate results
are fully materialized. Here, the Decomposed Storage Model offers another advan-
tage, keeping intermediate results very “slim” and hence rather small. The crucial
advantage of bulk-processing—next to its simple implementation—is the following.
With the BAT-algebra primitives operating on binary tables only and a limited set of
atomic data types, such as integer, float, character, string, etc., the number of type-
combinations per operator is rather limited. We exploit this to overcome a disadvan-
tage of the interpretation approach. Interpretation of algebra operators usually requires
a type-switch in the innermost loops, as the actual type-binding is only known at run-
time. Such type switches are typically realized by ADT-like function calls, and hence
they are rather expensive. With the limited number of type combinations in MIL, we
can provide a separate implementation of each operator for each case. To limit the

40 2 Preliminaries

coding effort, Monet is written in a macro language, from which C language imple-
mentations are generated. Per algorithm, only one template-implementation has to be
implemented “by hand”. At compile time, the macro language then expands the type-
specific variants from these templates. The macros implement a variety of techniques,
by virtue of which the inner loops of performance-critical algorithms like join are free
of overheads like database ADT calls, data movement, and loop condition manage-
ment. These techniques were either pioneered by our group (e.g., logarithmic code
expansion [Ker89]) or taken from the field of high performance computing [Sil97].
Furthermore, Monet is implemented using aggressive coding techniques for optimiz-
ing CPU resource utilization [MBK00b] that go much beyond the usual MMDBMS
implementation techniques [DKO+84]. In Chapter 5, we present some examples of
these techniques.

2.7.3 Query Optimization

In Monet, we pursue a multi-level query optimization approach [MPK00]. Front-end
applications can usestrategical optimization, exploiting domain-specific knowledge to
pre-optimize queries before sending them to the back-end. The MIL interpreter does
some multi-query optimization in atactical optimizationphase. This phase removes
common subexpressions of multiple queries, possibly sent by different front-ends, and
takes care of introducing parallelism in case the Monet back-ends runs multi-threaded.
Finally, the Monet kernel itself performsoperational optimization. Operational opti-
mization means that for each operator that is to be evaluated the kernel can choose the
proper algorithm and its implementation just before executing it. Here, we exploit the
fact that due to the bulk-processing approach, all operands are fully available before
the operator has to be executed. Next to their sizes, MIL operators maintain some
more properties of the BATs they generate, such as their data types and information
about whether attribute values are sorted and/or unique. At runtime, the kernel ex-
amines the of the operands as well as the systems current state and applies heuristics
to pick the most efficient algorithm and implementation for the given situation. For
instance in case of a join, the kernel can currently choose between nested-loop join,
hash-join, sort-merge join, and index-lookup join. In Chapter 5, we provide addi-
tional cache-conscious join algorithms and show how the cost models developed in
Chapter 4 are used to find the most suitable algorithm.

Chapter 3

Cost Factors in MMDBMS:
“No I /O” does not mean
“Only CPU”

In this chapter, we describe those aspects of hardware technology found in custom
computer systems that are most relevant for the performance of main-memory query
execution. We identify ongoing trends, and outline their consequences for database
architecture. In addition, we describe ourcalibration tool which extracts the most
important hardware characteristics like cache size, cache line size, and cache latency
from any computer system, and provide results for our benchmark platforms (modern
SGI, Sun, Intel, and AMD hardware).

3.1 Commodity Computer Architecture

Focusing on main-memory processing, we discuss the major technical issues of CPUs,
main-memory, and hardware caches which are relevant for database performance.

3.1.1 CPUs

Concerning CPUs, two aspects are of primary interest for this thesis. First of all, we
need to have a closer look at how modern CPUs are designed and how they do work.
Secondly, we briefly introduce hardware counters that help us to monitor certain events
within the CPU and thus understand their impact on the performance of programs.

3.1.1.1 Design & Working Methods

While CPU clock frequency has been following Moore’s law (doubling every 18
months [Moo65]), CPUs have additionally become faster through parallelismwithin
the processor. Scalar CPUs separate different execution stages for instructions, e.g.,

42 3 Cost Factors in MMDBMS

68020
68030
Sparc
superSparc I
superSparc I
superSparc II
ultraSparc I
ultraSparc II
R10000
R10000
R12000

1
1
1
3
3
3
5
5
5
5
5

80486
Pentium
Pentium
Pentium
Pentium
PentiumPro
PentiumII
PentiumII
PentiumII
PentiumIII
PentiumIII
Athlon
Athlon

60
90

100
133
200
300
350
400
600
733
500
800

1
2
2
2
2
5
5
5
5
5
5
9
9

processor memory

MHztype
#par. STREAM/copy
units

66

20
20
17
33
40
75

167

195
250
300

200

387.9

6.5
4.9
9.6

42.9
48.0
62.5

225.2
228.5
172.7
332.0
336.0

33.3
47.1
46.4
85.1
84.4

140.0
188.2
279.3
304.0
379.2
441.9

(bandwidth) (ns)

373.5

latency

1989
1990
1991
1992
1993
1994
1995
1996
1996
1997
1998

Sun
Sun
Sun
Sun
Sun
Sun
Sun
Sun
SGI
SGI
SGI

3/60
3/80
4/280
ss10/31
ss10/41
ss20/71
Ultra1 170
Ultra2 2200
Power Chall.
Origin 2000
Origin 2000

1992
1993
1994
1995
1996
1996
1997
1998
1998
1999
2000
1999
2000

Intel PC
Intel PC
Intel PC
Intel PC
Intel PC
Intel PC
Intel PC
Intel PC
Intel PC
Intel PC
Intel PC
AMD PC
AMD PC

year computer model

160

870
225
225
610
424
404

161
161
161
161
203
145
145
145
135

217
217
135

memory latency (ns)

memory bandwidth (MB/s)

improvement
1 percent

per year

50 percent
improvement
per year

CPU clock speed (Hz)

1

10

100

1000

10000

100000

1e+06

1986 1988 1990 1992 1994 1996 1998 2000
year

1

10

100

1000

10000

100000

1e+06

1986 1988 1990 1992 1994 1996 1998 2000
year

1

10

100

1000

10000

100000

1e+06

1986 1988 1990 1992 1994 1996 1998 2000
year

1

10

100

1000

10000

100000

1e+06

1986 1988 1990 1992 1994 1996 1998 2000
year

1

10

100

1000

10000

100000

1e+06

1986 1988 1990 1992 1994 1996 1998 2000
year

1

10

100

1000

10000

100000

1e+06

1986 1988 1990 1992 1994 1996 1998 2000
year

Figure 3.1: Trends in DRAM and CPU speed

chip
CPU

register
integer

register
float

lo
ad

/s
to

re
 +

ad
dr

es
s

tra
ns

la
tio

n

flo
at

flo
at

in
te

ge
r

in
te

ge
r

execution units

TLB

fetch&
decode
units

L1 instruction
cache L1 data cache

L1 cache line
(e.g. 32 bytes)

queue
instruction

System Bus

L2 cache(e.g. 64 bytes)
L2 cache−line

Main Memory
(e.g. 4096 bytes)
Memory Page

(swapfile on disk)
virtual memory Disk

Figure 3.2: Modern CPU and Hierarchical Memory Architecture

3.1 Commodity Computer Architecture 43

allowing a computation stage of one instruction to be overlapped with the decoding
stage of the next instruction. Such apipelineddesign allows for inter-stage paral-
lelism. Modernsuper-scalarCPUs add intra-stage parallelism, as they have multiple
copies of certain (pipelined) units that can be active simultaneously. Although CPUs
are commonly classified as either RISC (reduced instruction set computer) or CISC
(complex instruction set computing), modern CPUs combine successful features of
both. Figure 3.2 shows a simplified schema that characterizes how modern CPUs
work: instructions that need to be executed are loaded from memory by a fetch-and-
decode unit. In order to speed up this process, multiple fetch-and-decode units may
be present (e.g., Intel’s PentiumIII and AMD’s Athlon have three, the MIPS R10000
has two). Decoded instructions are placed in an instruction queue, from which they
are executed by one of various functional units, which are sometimes specialized in
integer-, floating-point, and load/store pipelines. The PentiumIII, for instance, has two
such functional units, the R10000 has five, and the Athlon has even nine. To exploit
this parallel potential, modern CPUs rely on techniques likebranch predictionto pre-
dict which instruction will be next before the previous has finished. Also, the modern
cache memories arenon-blocking, which means that a cache miss does not stall the
CPU. Such a design allows the pipelines to be filled with multiple instructions that will
probably have to be executed (a.k.a.speculative execution), betting on yet unknown
outcomes of previous instructions. All this goes accompanied by the necessary logic
to restore order in case of mispredicted branches. As this can cost a significant penalty,
and as it is very important to fill all pipelines to obtain the performance potential of the
CPU, much attention is paid in hardware design to efficient branch prediction. CPUs
work with prediction tablesthat record statistics about branches taken in the past.

3.1.1.2 Hardware Counters

Detailed insight into the behavior of CPUs while processing application code is a
prerequisite to understand, and eventually model, the performance of application pro-
grams. To aid this process, many modern CPUs provide so-calledhardware event
countersor performance countersthat allow to monitor certain performance-related
events that occur within the CPU while processing user code. Examples are the MIPS
R10k/R12k series, Sun’s UltraSPARC family, all Intel Pentium and Itanium CPUs,
AMD’s Athlons, DEC’s Alphas, IBM’s and Motorola’s PowerPC’s. Usually, each
counter can only monitor one event at a time, however with multiple counters present,
several events can be monitored concurrently. The number of counters per CPU varies
from 2 (e.g., MIPS R10k) to 8 (e.g., Intel Pentium 4).

Like the number of counters, also the number and kind of events that can be mon-
itored vary significantly between the different CPUs. We omit the details here and
refer the interested reader to the respective product manuals. Typically, the set of
events includes events like cache misses (both instruction and data), instructions de-
coded and executed, branches executed, branch mispredictions, etc.. We provide more
information as required later when we use these features.

In contrary to software profiling as offered by certain compilers and/or profiling
tools, using the hardware event counters has no impact on the execution performance.

44 3 Cost Factors in MMDBMS

Low-level access to the counters typically works via direct register access to select the
events, start and stop monitoring, and finally read-out the results. More convenient
high-level tools do exist but vary between hardware vendors and operating systems.

3.1.2 Main-Memory- & Cache-Systems

We now turn our attention to memory- and cache architectures. We explain the ba-
sic technical principles, discuss various aspects of memory access costs, and finally
introduce a unified hardware model to be used in the remainder of this thesis.

3.1.2.1 Memory- & Cache-Architectures

Modern computer architectures have ahierarchical memory systemas depicted in Fig-
ure 3.2. The main memory on the system board consists ofDRAM chips (Dynamic
Random Access Memory). While CPU speeds are increasing rapidly, DRAM access
latency has hardly progressed through time. To narrow the exponentially growing
performance gap between CPU speed and memory latency (cf., Figure 3.1),cache
memorieshave been introduced, consisting of fast but expensiveSRAMchips (Static
Random Access Memory). SRAM cells are usually made-up from six transistors per
memory bit, and hence, they consume a rather large area on the chips. DRAM cells re-
quire just a single transistor and a small capacitor to store a single bit. Thus, DRAMs
can store much more data than SRAMs of equal (physical) size. But due to some leak
current, the capacitor in DRAMs get discharged over time, and have to be recharged
(refreshed) periodically to keep their information. These refreshes slowdown access.

The fundamental principle of all cache architectures is “reference locality”, i.e., the
assumption that at any time the CPU, respectively the program, repeatedly accesses
only a limited amount of data (i.e., memory) that fits in the cache. Only the first access
is “slow”, as the data has to be loaded from main memory. We call this acompulsory
cache miss(see below). Subsequent accesses (to the same data or memory addresses)
are then “fast” as the data is then available in the cache. We call this acache hit. The
fraction of memory accesses that can be fulfilled from the cache is calledcache hit
rate; analogously, the fraction of memory accesses that cannot be fulfilled from the
cache is calledcache miss rate.

Cache memories are often organized inmultiple cascading levelsbetween the
main memory and the CPU. They become faster, but smaller, the closer they are to
the CPU. Originally, there was one level of typically 64 KB to 512 KB cache memory
located on the system board. As the chip manufacturing processes improved, a small
cache of about 4 KB to 16 KB got integrated on the CPU’s die itself, allowing much
faster access. The on-board is typically not replaced by the on-chip cache, but rather
both make up a cache hierarchy, with the one on chip calledfirst level(L1) cache and
the one on board calledsecond level(L2) cache. Recently, also the L2 cache has been
integrated on the CPU’s die (e.g., with Intel’s Pentium III “Coppermine”, or AMD’s
Athlon “Thunderbird”). On PC systems, the on-board cache has since disappeared,
keeping two cache levels. On other platforms, e.g., workstations based on Compaq’s

3.1 Commodity Computer Architecture 45

(formerly DEC’s) Alpha CPU, the on-board cache is kept asthird level (L3) cache,
next to the two levels on the die.

To keep presentations from becoming to complicated, we assume a typical system
with two cache levels (L1 & L2) in most examples in the remainder of this work.
However, our observations and results can easily be generalized to an arbitrary number
of cascading cache levels in a straightforward way.

In practice, caches memories do not only cache the data used by an application,
but also the program itself, more accurately, the instructions that are currently being
executed. With respect to caching, there is one major difference between data and
program. Usually, a program must not be modified while it is running, i.e., the caches
may be read-only. Data, however, requires caches that also allow modification of
the cached data. Therefore, almost all systems nowadays implement two separate L1
caches, a read-only one for instructions and a read-write one for data. The L2 cache,
however, is usually a single “unified” read-write cache used for both instructions and
data. Later in this thesis, we will see that instruction cache misses do not play a
significant role in our scenario. Hence, we will not discuss instruction caches in more
detail. Only where necessary, we will address them explicitly. Unless mentioned
differently, we will refer to data caches simply as caches.

Caches are characterized by three major parameters: Capacity (C), Line Size (Z),
and Associativity (A):

Capacity (C) A cache’s capacity defines its total size in bytes. Typical cache sizes
range from 8 KB to 8 MB.

Line Size (Z) Caches are organized incache lines, which represent the smallest unit
of transfer between adjacent cache levels. Whenever a cache miss occurs, a
complete cache line (i.e., multiple consecutive words) is loaded from the next
cache level or from main memory, transferring all bits in the cache line in paral-
lel over a wide bus. This exploits spatial locality, increasing the chances of
cache hits for future references to data that is ”closed to”the reference that
caused a cache miss. Typical cache line sizes range from 16 bytes to 128 bytes.

Dividing the cache capacity by the cache line size, we get thenumber of avail-
able cache linesin the cache: #= C/Z. Cache lines are often also calledcache
blocks. We use both terms as synonyms throughout this document.

Associativity (A) To which cache line the memory is loaded, depends on the mem-
ory address and on the cache’sassociativity. An A-way set associativecache
allows to load a line inA different positions. IfA > 1, somecache replace-
mentpolicy chooses one from theA candidates.Least Recently Used(LRU)
is the most common replacement algorithm. In caseA = 1, we call the cache
direct-mapped. This organization causes the least (virtually no) overhead in de-
termining the cache line candidate. However, it also offers the least flexibility
and may cause a lot ofconflict misses(see below). The other extreme case are
fully associativecaches. Here, each memory address can be loaded to any line
in the cache (A = #). This avoids conflict misses, and onlycapacity misses

46 3 Cost Factors in MMDBMS

(see below) occur as the cache capacity gets exceeded. However, determining
the cache line candidate in this strategy causes a relatively high overhead that
increases with the cache size. Hence, it is feasible only for smaller caches. Cur-
rent PCs and workstations typically implement 2-way to 8-way set associative
caches.

With multiple cache levels, we further distinguish two types: inclusive and exclu-
sive caches. Withinclusive caches, all data stored in L1 is also stored in L2. As data is
loaded from memory, it gets stored in all cache levels. Whenever a cache line needs to
be replaced in L1 (because a mapping conflict occurs or as the capacity is exceeded),
its original content can simply be discarded as another copy of that data still remains
in the (usually larger) L2. The new content is then loaded from where it is found (ei-
ther L2 or main memory). The total capacity of an inclusive cache hierarchy is hence
determined by the largest level. Withexclusive caches, all cached data is stored in
exactly one cache level. As data is loaded from memory, it gets stored only in the
L1 cache. When a cache lines needs to be replaced in L1, its original content is first
written back to L2. If the new content is then found in L2, it is moved from L2 to L1,
otherwise, it is copied from main memory to L1. Compared to inclusive cache hierar-
chies, exclusive cache hierarchies virtually extend the cache size, as the total capacity
becomes the sum of all levels. However, the “swap” of cache lines between adjacent
cache levels in case of a cache miss also causes more “traffic” on the bus and hence
increases the cache miss latency. We will analyze this in more detail in Section 3.3.

Cache misses can be classified into the following disjoint types [HS89]:

Compulsory The very first reference to a cache line always causes a cache miss,
which is hence classified as a compulsory miss. The number of compulsory
misses obviously depends only on the data volume and the cache line size.

Capacity A reference that misses in a fully associative cache is classified as a ca-
pacity miss because the finite sized cache is unable to hold all the referenced
data. Capacity misses can be minimized by increasing the temporal and spatial
locality of references in the algorithm. Increasing cache size also reduces the
capacity misses because it captures more locality.

Conflict A reference that hits in a fully associative cache but misses in anA-way set
associative cache is classified as a conflict miss. This is because even though
the cache was large enough to hold all the recently accessed data, its associa-
tivity constraints force some of the required data out of the cache prematurely.
For instance, alternately accessing just two memory addresses that “happen to
be” mapped to the same cache line will cause a conflict cache miss with each
access. Conflict misses are the hardest to remove because they occur due to
address conflicts in the data structure layout and are specific to a cache size
and associativity. Data structures would, in general, have to be remapped so as
to minimize conflicting addresses. Increasing the associativity of a cache will
decrease the conflict misses.

3.1 Commodity Computer Architecture 47

3.1.2.2 Memory Access Costs

We identify the following three aspects that determine memory access costs. For
simplicity of presentation, we assume 2 cache levels in this section. Generalization to
an arbitrary number of caches is straight forward.

Latency Latency is the time span that passes after issuing a data access until the
requested data is available in the CPU. In hierarchical memory systems, the latency
increases with the distance from the CPU. Accessing data that is already available
in the L1 cache causesL1 access latency(λL1), which is typically rather small (1 or
2 CPU cycles). In case the requested data in not found in L1, anL1 missoccurs,
additionally delaying the data access byL2 access latency(λL2) for accessing the
L2 cache. Analogously, if the data is not yet available in L2, anL2 missoccurs,
further delaying the access bymemory access latency(λMem) to finally load the data
from main memory. Hence, the total latency to access data that is in neither cache is
λMem + λL2 + λL1. As L1 accesses cannot be avoided, we assume in the remainder of
this thesis, that L1 access latency is included in the pure CPU costs, and regard only
memory access latency and L2 access latency as explicit memory access costs. As
mentioned above, all current hardware actually transfers multiple consecutive words,
i.e., a complete cache line, during this time.

When a CPU requests data from a certain memory address, modern DRAM chips
supply not only the requested data, but also the data from subsequent addresses. The
data is then available without additional address request. This feature is calledEx-
tended Data Output(EDO). Anticipating sequential memory access, EDO reduces
the effective latency. Hence, we actually need to distinguish two types of latency for
memory access.Sequential access latency(λs) occurs with sequential memory ac-
cess, exploiting the EDO feature. With random memory access, EDO does not speed
up memory access. Thus,random access latency(λr) is usually higher than sequential
access latency.

Bandwidth Bandwidth is a metric for the data volume (in megabytes) that can be
transfered between CPU and main memory per second. Bandwidth usually decreases
with the distance from the CPU, i.e., between L1 and L2 more data can be transfered
per time than between L2 and main memory. We refer to the different bandwidths
asL2 access bandwidth(βL2) andmemory access bandwidth(βMem), respectively. In
conventional hardware, the memory bandwidth used to be simply the cache line size
divided by the memory latency. Modern multiprocessor systems typically provide
excess bandwidth capacityβ′ ≥ β. To exploit this, caches need to benon-blocking,
i.e., they need to allow more than one outstanding memory load at a time, and the
CPU has to be able to issue subsequent load requests while waiting for the first one(s)
to be resolved. Further, the access pattern needs to be sequential, in order to exploit
the EDO feature as described above.

Indicating its dependency on sequential access, we refer to the excess bandwidth
assequential access bandwidth(βs = β′). We define the respectivesequential access
latencyasλs = Z/βs. For random access latencyas described above, we define the

48 3 Cost Factors in MMDBMS

respectiverandom access bandwidthasβr = Z/λr. For better readability, we will
simply use plainλ andβ (i.e., withouts respectivelyr) whenever we refer to both
sequential and random access without explicitly distinguishing between them.

On some architectures, there is a difference between read and write bandwidth, but
this difference tends to be small. Therefore, we do not distinguish between read and
write bandwidth in this article.

Address Translation For data access, logical virtual memory addresses used by
application code have to be translated to physical page addresses in the main memory
of the computer. In modern CPUs, aTranslation Lookaside Buffer (TLB) is used as a
cache for physical page addresses, holding the translation for the most recently used
pages (typically 64). If a logical address is found in the TLB, the translation has no
additional costs. Otherwise, aTLB missoccurs. The more pages an application uses
(which also depends on the often configurable size of the memory pages), the higher
the probability of TLB misses.

The actualTLB miss latency(lTLB) depends on whether a system handles a TLB
miss in hardware or in software. With software-handled TLB, TLB miss latency can
be up to an order of magnitude larger than with hardware-handled TLB. Hardware-
handled TLB fetches the translation from a fixed memory structure, which is just filled
by the operating system. Software-handled TLB leaves the translation method entirely
to the operating system, but requires trapping to a routine in the operating system ker-
nel on each TLB miss. Depending on the implementation and hardware architecture,
TLB misses can therefore be more costly even than a main-memory access. Moreover,
as address translation often requires accessing some memory structure, this can in turn
trigger additional memory cache misses.

We will treat TLBs just like memory caches, using the memory page size as
their cache line size, and calculating their (virtual) capacity asnumberof entries×
pagesize. TLBs are usually fully associative. Like caches, TLBs can be organized in
multiple cascading levels.

For TLBs, there is no difference between sequential and random access latency.
Further, bandwidth is irrelevant for TLBs, because a TLB miss does not cause any
data transfer.

3.1.2.3 Unified Hardware Model

Summarizing our previous discussion, we describe a computers memory hardware
as a cascading hierarchy ofN levels of caches (including TLBs). We add an index
i ∈ {1, . . . ,N} to the parameters described above to refer to the respective value of
a specific level. The relation between access latency and access bandwidth then be-
comesλi+1 = Zi/βi+1. To simplify the notation, we exploit the dualism that an access
to level i + 1 is caused a miss on leveli. Introducing themiss latency li = λi+1 and
the respectivemiss bandwidth bi = βi+1, we getl i = Zi/bi . Each cache level is char-
acterized by the parameters given in Table 3.1.1 In Section 3.3, we will present a

1We assume that costs for L1 cache accesses are included in the CPU costs, i.e.,λ1 andβ1 are not used
and hence undefined.

3.2 The New Bottleneck: Memory Access 49

description unit symbol

cache name (level) - Li

cache capacity [bytes] Ci

cache block size [bytes] Zi

number of cache lines - #i = Ci/Zi

cache associativity - Ai

sequential access

access bandwidth [bytes/ns] βsi+1

access latency [ns] λsi+1 = Zi/β
s
i+1

miss latency [ns] lsi = λ
s
i+1

miss bandwidth [bytes/ns] bsi = β
s
i+1

random access

access latency [ns] λri+1

access bandwidth [bytes/ns] βri+1 = Zi/λ
r
i+1

miss bandwidth [bytes/ns] bri = β
r
i+1

miss latency [ns] lri = λ
r
i+1

Table 3.1: Characteristic Parameters per Cache Level (i ∈ {1, . . . ,N})1

system independent C program calledCalibrator to measure these parameters on any
computer hardware. We point out, that these parameters also cover the cost-relevant
characteristics of disk accesses. Hence, viewing main memory (e.g., a database sys-
tem’s buffer pool) as cache for I/O operations, it is straight forward to include disk
access in this hardware model. Where appropriate, we use levelN+ 1 as synonym for
main memory respectively secondary storage.

Though the unified hardware model is convenient for our following analysis, it
sometime makes real-life examples a bit hard to read. For this reason, we will also use
symbolical indices like ”L1”, ”L2”, ”TLB”, ”Mem”, or ”Disk”instead of i to indicate
the various levels of caches and memories.

3.2 The New Bottleneck: Memory Access

In this section, we demonstrate the severe impact of memory access costs on the
performance of elementary database operations. Using a traceable example, we first
gather some general observations. Then, we analyze the results in detail and develop
an analytical performance model. Finally, we present the results of our experiment on
a number of machines and discuss them in a broader context.

50 3 Cost Factors in MMDBMS

1e+01

1e+02

1e+03

1 2 4 8 16 32 64 128 256 512

na
no

se
co

nd
s

pe
r i

te
ra

tio
n

record width (stride) [byte]

Figure 3.3: Sequential scan:
Performance

1e-03

1e-02

1e-01

1e+00

1e+01

1 2 4 8 16 32 64 128 256 512
ev

en
ts

 p
er

 it
er

at
io

n

record width (stride) [byte]

 L1 misses
 L2 misses

Figure 3.4: Sequential scan:
Cache misses

3.2.1 Initial Example

As sample query, we use a simple aggregation (say, SELECT MAX(column) FROM
table) on a one-byte attribute of an in-memory table. This query performs a sequential
scan over the table. By varying the record width of the table, we vary thestride,
i.e., the offset between two subsequently accessed memory addresses. We keep the
cardinality of the table constant at 1,000,000 tuples. We use Monet to execute the
experiment on an SGI Origin2000. This system uses the MIPS R10000 processor
(250 MHz) with an L1 cache of 32KB (1024 lines of 32 bytes), and has an L2 cache
of 4MB (32,768 lines of 128 bytes). The detailed hardware characteristics as derived
by our Calibration Tool can be found in Section 3.3.

Figure 3.3 shows the results for various strides in terms of nanoseconds per itera-
tion. We made sure that the table was in memory, but not in any of the memory caches,
by first scanning the table in question, and then multiple times scanning some other
table larger than the largest cache size.

3.2.2 General Observations

When the stride is small, successive iterations in the scan read bytes that are near to
each other in memory, hitting the same cache line. The number of L1 and L2 cache
misses is therefore low (cf., Figure 3.4)2. The L1 miss rate reaches its maximum of
one miss per iteration as soon as the stride reaches the size of an L1 cache line (32
bytes). Only the L2 miss rate increases further, until the stride exceeds the size of an
L2 cache line (128 bytes). Then, it is certain that every memory read is a cache miss.
Performance cannot become any worse and stays constant.

2We used the hardware counters provided by the MIPS R10000 CPU to measure the number of cache
misses.

3.2 The New Bottleneck: Memory Access 51

3.2.3 Detailed Analysis

In the following, we present a detailed analysis of our experiment. Though we use
the SGI Origin2000 as sample machine, we keep the models applicable to other sys-
tems as well by using a set of specific parameters to describe the respective hardware
characteristics. See Section 3.1.2 for a detailed description of these parameters. In
Section 3.3, we will present our Calibration Tool to measure the parameters.

In general, the execution costs per iteration of our experiment—depending on the
strides—can be modeled in terms of pure CPU costs (including data accesses in the
on-chip L1 cache) and additional costs due to L2 cache accesses and main-memory
accesses.

To measure the pure CPU costs—i.e., without any memory access costs—, we
reduce the problem size to fit in L1 cache and ensure that the table is cached in L1
before running the experiment. This way, we observedTCPU = 24ns (6 cycles) per
iteration for our experiment.

We model the costs for accessing data in the L2 cache and in main memory by
scoring each access with the respective latency. As observed above, the number of
L2 and main memory accesses (i.e., the number of L1 and L2 misses, respectively)
depends on the access stride. With a strides smaller than the cache line sizeZ, the

average number of cache misses per iteration isM (s) =
s
Z

. With a stride equal to or

larger than the cache line size, a miss occurs with each iteration. In general, we get

MLi(s) =


s

ZLi
, if s< ZLi

1, if s≥ ZLi

 = min

{
s

ZLi
,1

}
, i ∈ {1,2} (3.1)

with MLi andZLi (i ∈ {1,2}) denoting the number of cache misses and the cache line
sizes for each level, respectively. Figure 3.5 comparesML1 andML2 to the measured
number of cache misses.

We get the total costs per iteration—depending on the access stride—by summing
the CPU costs, the L2 access costs, and the main-memory access costs:

T(s) = TCPU+ TL2(s) + TMem(s) (“model 1”)

with
TL2(s) = ML1(s) ∗ λL2, TMem(s) = ML2(s) ∗ λMem,

whereλx (x ∈ {L2,Mem}) denote the (cache) memory access latencies for each level,
respectively. We measure the L2 and memory latency with our calibration tool pre-
sented in the next section (see Table 3.2). Figure 3.6 shows the resulting curve as
“model 1”.

Obviously, this model does not match the experimental results. The reason is, that
the R10000 processor is super scalar and can handle up toq = 4 active operations
concurrently. Thus, the impact of memory access latency on the overall execution
time may be reduced as (1) there must be four unresolved memory requests before the
CPU stalls, and (2) up toq L1 or L2 cache lines may be loaded in parallel. In other
words, operations may (partly) overlap. Consequently, their costs must not simply be

52 3 Cost Factors in MMDBMS

1e-03

1e-02

1e-01

1e+00

1e+01

1 2 4 8 16 32 64 128 256 512

ev
en

ts
 p

er
 it

er
at

io
n

record width (stride) [byte]

L1 misses
L2 misses

Figure 3.5: Seq. scan cache misses:
Measured (points) and
Modeled (lines)

1e+01

1e+02

1e+03

1 2 4 8 16 32 64 128 256 512
na

no
se

co
nd

s
pe

r i
te

ra
tio

n

record width (stride) [byte]

experiment
model 1
model 2
model 3

ideal

Figure 3.6: Seq. scan performance:
Experiment and Models

added. Instead, we combine two cost componentsx andy, given the degreeo ∈ [0..1]
they overlap, using the following function:

O(o, x, y) = max{x, y} + (1− o) ∗min{x, y} = x+ y− o ∗min{x, y}.

This overlap function forms a linear interpolation between the two extreme cases
• no overlap (o = 0) =⇒ O(0, x, y) = x+ y, and
• full overlap (o = 1) =⇒ O(1, x, y) = max{x, y}.

Let o1 ando2 be the degrees of overlap for L2 access and main-memory access,
respectively. Then, we get the total cost — considering overlap of CPU cost and
memory access costs — as follows:

T = O(o1 ∗ o2,TCPU,TL2 + TMem).

The following consideration will help us to determineo1 ando2. In our experiments,
we have a pure sequential memory access pattern. Up to a stride of 8 bytes, 4 sub-
sequent memory references refer to the same 32-bytes L1 line, i.e., only one L1 line
is loaded at a time, not allowing any overlap of pure calculation and memory access
(o1 = o2 = 0). With strides between 8 and 32 bytes,o1 linearly increases toward its
maximum. The same holds foro2 with strides between 32 and 128 bytes, as L2 lines

3.2 The New Bottleneck: Memory Access 53

contain 128 bytes on the R10000. Thus, we get

oi(s) = max

0,min

1,
s−

ZLi

q

ZLi −
ZLi

q




=



0, if s≤
ZLi

q

s−
ZLi

q

ZLi −
ZLi

q

, if
ZLi

q
< s< ZLi

1, if s≥ ZLi

(i ∈ {1,2})

Similarly, up toq = 4 cache lines can be loaded concurrently during a single la-
tency period, reducing the effective latency per cache miss to1

q-th. Following the pre-
vious overlap considerations, we model the effective latency depending on the stride:

λ′L2(s) = λmin
L2 + (1− o1(s)) ∗

(
λL2 − λ

min
L2

)
, λmin

L2 =
λL2

q

λ′Mem(s) = λmin
Mem + (1− o2(s)) ∗

(
λMem − λ

min
Mem

)
, λmin

Mem =
λMem

q
.

Now, we can refine our model as follows:

T(s) = O
(
o1(s) ∗ o2(s),TCPU,T

′
L2(s) + T′Mem(s)

)
(“model 2”)

with
T′L2(s) = ML1(s) ∗ λ′L2(s), T′Mem(s) = ML2(s) ∗ λ′Mem(s),

andTCPU, ML1, ML2, λ′L2, λ′Mem as above.
Figure 3.6 depicts the resulting curve as “model 2”. The curve fits the experimental

results almost exactly for smaller strides up tos= 32. For larges strides, however, the
modeled costs are significantly lower than the measured costs. When loading several
cache lines concurrently we have to consider another limit: bandwidth. L2 bandwidth
is large enough to allowq = 4 concurrent L1 loads within a single L2 latency period
(4 ∗ 32 bytes within 24ns (6 cycles), i.e.,∼5GB/s). Memory bandwidth, however, is
limited to 555MB/s.3 Hence, loading four L2 lines (4∗ 128 bytes) in parallel takes at
least 880ns (220 cycles), or on averageλbw

Mem = 220ns (55 cycles) per line.
Replacingλmin

Mem by λbw
Mem in “model 2” yields our final “model 3”. As Figure 3.6

shows, “model 3” fits the experimental curve pretty well. In this scenario, the “ideal”
performance of

T(s) = max{TCPU,T
′
L2(s),T′Mem(s)}, (“ideal”)

i.e., with o1 = o2 = 1, is not reached (cf., “ideal” in Fig. 3.6), because the whole
memory bandwidth cannot be utilized automatically for smaller strides, i.e., when
several memory references refer to a single L2 line.

3See Section 3.3, Table 3.2.

54 3 Cost Factors in MMDBMS

12864321 16 12864321 16 256 12864321 16 bytes
(stride)

Memory
CPU

64321 16 12864321 16 256 1 128643216 256 512 12864321 16 12864321 16 256
0

250

100

200

50

150

el
ap

se
d

tim
e

pe
r i

te
ra

tio
n

[n
an

os
ec

on
ds

]

1996

UltraSparc

16 / 64
200 MHz

PentiumPro

1997

32 / 32
200 MHz

Sparc PentiumCPU type

1992 1995year

size (L1/L2)
16 / − 32 / 32cache line

50 MHz 133 MHzCPU speed
Alpha R10000

1998 1998

PentiumIII

1999

32 / 64 32 / 128
500 MHz 250 MHz

32 / 32
450 MHz

16 / 64

2000

UltraSparcII
400 MHz

Sun Ultra PCPCSun LXsystem DEC Alpha Origin2000 PC Sun Ultra

Figure 3.7: CPU and memory access costs per tuple in a simple table scan

3.2.4 Discussion

The detailed analysis and the models derived, show how hardware specific parameters
such as cache line sizes, cache miss penalties, and degree of CPU-inherent parallelism
determine the performance of our scan experiment. We will now discuss the experi-
ment in a broader context.

Figure 3.7 shows results of the above experiment on a number of popular work-
stations of the past decade. The X-axis shows the different systems ordered by their
age, and per system the different strides tested. The Y-axis shows the absolute elapsed
time for the experiments. For each system, the graph is split up to show which part
of the elapsed time is spent waiting for memory (upper), and which part with CPU
processing (lower, gray-shaded).

While all machines in Figure 3.7 exhibit the same pattern of performance degra-
dation with decreasing data locality, Figure 3.7 clearly shows that the penalty for poor
memory cache usage has dramatically increased in the last ten years. The CPU speed
has improved by at least an order of magnitude, both through higher clock frequencies
and through increased CPU-inherent parallelism. However, the memory cost trend
in Figure 3.7 shows a mixed picture, and has clearly not kept up with the advances
in CPU power. Consequently, while our experiment was still largely CPU-bound on
the Sun from 1992, it is dominated by memory access costs on the modern machines
(even the PentiumIII with fast memory is 75% of the time waiting for memory). Note
that the later machines from Sun, Silicon Graphics and DEC actually have memory
access costs that in absolute numbers are even higher than on the Sun from 1992. This
can be attributed to the complex memory subsystem that comes with SMP architec-
tures, resulting in a high memory latency. These machines do provide a high memory
bandwidth—thanks to the ever growing cache line sizes4—but this does not solve the

4In one cache miss, the Origin2000 fetches 128 bytes, whereas the Sun LX fetches only 16; an improve-
ment of factor 8.

3.2 The New Bottleneck: Memory Access 55

latency problem if data locality is low. In fact, we must draw the sad conclusion that
if no attention is paid in query processing to data locality, all advances in CPU power
are neutralized due to the memory access bottleneck caused by memory latency.

The trend of improvement in bandwidth but standstill in latency [Ram96, SLD97]
is expected to continue, with no real solutions in sight. The work in [Mow94] has
proposed to hide memory latency behind CPU work by issuingprefetchinstructions,
before data is going to be accessed. The effectiveness of this technique for database
applications is, however, limited due to the fact that the amount of CPU work per mem-
ory access tends to be small in database operations (e.g., the CPU work in our select-
experiment requires only 4 cycles on the Origin2000). Another proposal [MKW+98]
has been to make the caching system of a computer configurable, allowing the pro-
grammer to give a “cache-hint” by specifying the memory-access stride that is going
to be used on a region. Only the specified data would then be fetched; hence opti-
mizing bandwidth usage. Such a proposal has not yet been considered for custom
hardware, however, let alone in OS and compiler tools that would need to provide the
possibility to incorporate such hints for user-programs.

Our simple experiment makes clear why database systems are quickly constrained
by memory access, even on simple tasks like scanning, that seem to have an access
pattern that is easy to cache (sequential). The default physical representation of a
tuple is a consecutive byte sequence (a “record”), which must always be accessed by
the bottom operators in a query evaluation tree (typically selections or projections).
The record byte-width of typical relational table amounts to some hundreds of bytes.
Figure 3.7 makes clear that such large strides lead to worst-case performance, such
that the memory access bottleneck kills all CPU performance advances.

To improve performance, we strongly recommend usingvertically fragmented
data structures. In Monet, wefully decompose relational tables on all columns, storing
each in a separate Binary Association Tables (BAT). This approach is known in litera-
ture as the Decomposed Storage Model [CK85]. A BAT is represented in memory as
an array of fixed-size two-field records [OID,value]—called Binary UNits (BUN)—
where the OIDs are used to link together the tuples that are decomposed across differ-
ent BATs. Full vertical fragmentation keeps the database records thin (8 bytes or less)
and is therefore the key for reducing memory access costs (staying on the left side of
the graphs in Figure 3.7). In Section 2.7, we presented specific implementation details
of Monet.

3.2.5 Implications for Data Structures

In terms of data structures for query processing, we already noted from the simple scan
experiment in Figure 3.7 thatfull vertical table fragmentationoptimizes column-wise
memory access to table data. This is particularly beneficial if the table is accessed in
a sequential scan that reads a minority of all columns. Such table scans very often
occur in both OLAP and Data Mining workloads. When record-oriented (i.e., non-
fragmented) physical storage is used, such an access leads to data of the non-used
columns being loaded into the cache lines, wasting memory bandwidth. In case of
a vertically fragmented table, the table scan just needs to load the vertical fragments

56 3 Cost Factors in MMDBMS

stroid
1000
1001
1002
1003
1004
1005
1006
1007

logical appearance

AIR
MAIL
TRUCK
AIR
SHIP
AIR
SHIP
MAIL

chr str
REG AIR
TRUCK
AIR
MAIL
RAIL
FOB
SHIP

0
1
2
3
4
5
6

3

chr

3
1
2
6
2
6

2
void encoding BAT

structures
physical data

1000
1001
1002
1003
1004

1006
1007

1005

10
10

11
11
11
12
13
13

oid int
1000
1001
1002
1003
1004

1006
1007

1005

04.75
11.50
10.20
75.00
02.50
92.80
37.50
14.25

oid float

8 bytes

1000
1001
1002
1003
1004

1006
1007

1005

0.10
0.00
0.00
0.00
0.00
0.10
0.10
0.00

oid float

8 bytes

0.10
0.00
0.00
0.00
0.00
0.10
0.10
0.00

10
10

11
11
11
12
13
13

width of relational tuple ~= 80 bytes

8 bytes

vertical fragmentation in Monet

price discntqty statusshipmodedate1 date2 comment
"Item" Table

04.75
11.50
10.20
75.00
02.50
92.80
37.50
14.25

AIR
MAIL
TRUCK
AIR
SHIP
AIR
SHIP
MAIL

intint int float float int varcharintfloat char(1)

tax flag

date date date char(27)

partsupporder

optimized BAT storage: 1 byte per column

Figure 3.8: Vertical Decomposition in BATs

pertaining to the columns of interest. Reading those vertical fragments sequentially
achieves a 100% hit rate on all cache levels, exploiting optimal bandwidth on any
hardware, including parallel memory access.

There are various ways to incorporate vertical fragmentation in database technol-
ogy. In Monet, which we designed for OLAP and Data Mining workloads, vertical
fragmentation is the basic building block of all physical storage, as Monet fully frag-
ments all relations into Binary Association Tables (BATs) (see Figure 3.8). Flat binary
tables are a simple set-oriented physical representation, that is not tied to a particular
logical data model, yet is sufficiently powerful to represent, e.g., join indices [Val87].
Monet has successfully been used to store and query relational, object-oriented and
network data structures, using this very simple data model and a small kernel of alge-
braic operations on it [BK99]. In Monet, we applied two additional optimizations that
further reduce the per-tuple memory requirements in its BATs:

• virtual-OIDs. Generally, when decomposing a relational table, we get an iden-
tical system-generated column of OIDs in all decomposition BATs, which is
dense and ascending(e.g., 1000, 1001, . . . , 1007). In such BATs, Monet com-
putes the OID-values on-the-fly when they are accessed using positional lookup
of the BUN, and avoids allocating the 4-byte OID field. This is called a “virtual-
OID” or VOID column. Apart from reducing memory requirements by half,
this optimization is also beneficial when joins or semi-joins are performed on

3.3 The Calibrator: Quantification of Memory Access Costs 57

OID columns.5 When one of the join columns is VOID, Monet uses positional
lookup instead of, e.g., hash-lookup; effectively eliminating all join costs.

• byte-encodings.Database columns often have a low domain cardinality. For
such columns, Monet uses fixed-size encodings in 1- or 2-byte integer values.
This simple technique was chosen because it does not require decoding effort
when the values are used (e.g., a selection on a string “MAIL” can be re-mapped
to a selection on a byte with value 3). A more complex scheme (e.g., using bit-
compression) might yield even more memory savings, but the decoding-step
required whenever values are accessed can quickly become counterproductive
due to extra CPU effort. Even if decoding would just cost a handful of cycles
per tuple, this would more than double the amount of CPU effort in simple
database operations, like a simple aggregation from Section 3.2.1, which takes
just 2 cycles of CPU work per tuple.

Figure 3.8 shows that when applying both techniques, the storage needed for 1
BUN in the “shipmode” column is reduced from 8 bytes to just one. Reducing the
stride from 8 to 1 byte significantly enhances performance in the scan experiment
from Figure 3.7, eliminating all memory access costs.

Alternative ways of using vertical table fragmentation in a database system are to
offer the logical abstraction of relational tables but employ physically fragmentation
in transposed files[Bat79] on the physical level (like in NonStopSQL [CDH+99]), or
to use vertically fragmented data as a search accelerator structure, similar to a B-tree.
Sybase IQ uses this approach, as it automatically createsprojection indiceson each
table column [Syb96]. In the end, however, all these approaches lead to the same kind
and degree of fragmentation.

3.3 The Calibrator: Quantification of Memory Access
Costs

In order to model memory access costs in detail, we need to know the characteristic
parameters of the memory system, including memory sizes, cache sizes, cache line
sizes, and access latencies. Often, not all these parameters are (correctly) listed in the
hardware manuals. In the following, we describe a simple but powerfulcalibration
tool to measure the (cache) memory characteristics of an arbitrary machine.

3.3.1 Calibrating the (Cache-) Memory System

The idea underlying our calibrator tool is to have a micro benchmark whose perfor-
mance only depends on the frequency of cache misses that occur. Our calibrator is a
simple C program, mainly a small loop that executes a million memory reads, repeat-
edly sweeping over an array stored in main memory. By changing thestride(i.e., the

5In Monet, the projection phase in query processing typically leads to additional “tuple-reconstruction”
joins on OID columns that are caused by the fact that tuples are decomposed into multiple BATs.

58 3 Cost Factors in MMDBMS

stride

array size

Figure 3.9: Calibration Tool: Walking “backward” through the memory array

offset between two subsequent memory accesses) and thearray size, we force varying
cache miss rates.

In principle, the occurrence of cache misses is determined by the array size. Ac-
cessing an array that fits into the L1 cache does not generate any cache misses once
the data is loaded into the cache. Analogously, sweeping over an array that exceeds
the L1 cache size, but still fits into L2, will cause L1 misses but no L2 misses. Finally,
using an array larger than L2 causes both L1 and L2 misses.

The frequency of cache misses depends on the access stride and the cache line
size. With strides equal to or larger than the cache line size, a cache miss occurs with
every iteration. With strides smaller than the cache line size, a cache miss occurs only
everyn iterations (on average), wheren is the ratio cacheline size/stride. In this latter
case, each miss causes a complete cache line to be loaded into the cache, providing
the data for both the request that triggered the miss and the subsequentn− 1 requests
that access data within the same cache line.

Thus, we can calculate the latency for a cache miss by comparing the execution
time without misses to the execution time with exactly one miss per iteration. This
approach only works, if memory accesses are executed purely sequential, i.e., we
have to ensure that neither two or more load instructions nor memory access and pure
CPU work can overlap. We use a simple pointer chasing mechanism to achieve this:
the memory area we access is initialized such that each load returns the address for
the subsequent load in the next iteration. Thus, super-scalar CPUs cannot benefit
from their ability to hide memory access latency by speculative execution. Further,
we need to avoid that the system can benefit from prefetching.Prefetchingdepicts
a mechanism where CPUs do not only load the demanded cache line, but also some
cache line ahead (i.e., the subsequent cache lines in memory) although they are not re-
quested, yet. With a sequential “forward-oriented” memory access pattern, this tech-
nique allows to (partly) overlap CPU processing and memory accesses (even without
speculative execution), and hence may reduce the effective memory access latency. To
disable prefetching or at least make it “useless”, the calibration tool walks “backward”
through the memory. Figure 3.9 illustrates this.

To measure the cache characteristics, we run our experiment several times, vary-
ing the stride and the array size. We make sure that the stride varies at least between

3.3 The Calibrator: Quantification of Memory Access Costs 59

4 bytes and twice the maximal expected cache line size, and that the array size varies
from half the minimal expected cache size to at least ten times the maximal expected
cache size. In case the array is so big that the default 1 million iterations using the
given stride do not cover the whole array, we increase the number of iterations accord-
ingly.

We run two experiments. In the first, the insert a delay of about 100 CPU cycles
between to subsequent memory accesses. Thus, we give the whole cache-memory-
system and the connecting bus some time to “calm down”. This tries to mimic a
“once-a-while” kind of access. In the second experiment, we run without the delay,
continuously issuing memory accesses. Comparing the two experiments, we find out,
whether the cache and memory latencies differ between “once-a-while” and continu-
ous memory access. To distinguish the results derived from both experiments, we call
the firstcache miss latenciesand the lattercache replace times(derived from the fact
that exclusive cache hierarchies actually do swap cache lines between adjacent cache
levels; cf., Section 3.1.2).

Figure 3.10a depicts the resulting execution time (in nanoseconds) per iteration
of the first experiment for different array sizes on an Origin2000 (MIPS R10000, 250
MHz = 4ns per cycle). Each curve represents a different stride. From this figure,
we can derive the desired parameters as follows: Up to an array size of 32 KB, one
iteration takes 8 nanoseconds (i.e., 2 cycles), independent on the stride. Here, no cache
misses occur once the data is loaded, as the array completely fits in L1 cache. One
of the two cycles accounts for executing the load instruction, the other one accounts
for the latency to access data in L1. With array sizes between 32 KB and 4 MB, the
array exceeds L1, but still fits in L2. Thus, L1 misses occur. In other words, the two
steps in the curves at array sizes of 32 KB and 4 MB, respectively, indicate that there
are two cache levels, L1 and L2, with sizes of 32 KB and 4 MB, respectively. The
miss rate (i.e., the number of misses per iteration) depends on the stride (s) and the L1

cache line size (ZL1). With s< ZL1,
s

ZL1
L1 misses occur per iteration (or one L1 miss

occurs every
ZL1

s
iterations). Withs≥ ZL1, each load causes an L1 miss. Figure 3.10a

shows that the execution time increases with the stride, up to a stride of 32. Then, it
stays constant. Hence, L1 line size is 32 byte. Further, L1 miss latency (i.e., L2 access
latency) is 32ns− 8ns = 24ns, or 6 cycles. Similarly, when the array size exceeds
L2 size (4 MB), L2 misses occur. Here, the L2 line size is 128 byte, and the L2 miss
latency (memory access latency) is 324ns− 32ns= 292ns, or 73 cycles.

Analogously, Figures 3.10b through 3.10d show the results for a Sun Ultra (Sun
UltraSPARC, 200 MHz= 5ns per cycle), an Intel PC (Intel PentiumIII, 450 MHz=
2.22ns per cycle), and an AMD PC (AMD Athlon, 600 MHz= 1.67ns per cycle). All
curves show two steps, indicating the existence of two cache levels and their sizes.

The random access memory bandwidthfor our systems, listed in Table 3.2, is
computed from the cache line sizes and the latencies as follows:

βrMem =
ZL2

λMem +
ZL2

ZL1
∗ λL2

.

60 3 Cost Factors in MMDBMS

1

10

100

1000

4k 16k 64k 256k 1M 4M 16M

(2)

(8)

(81)

0.25

2.5

25

250
[32k] [4M]

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

array size [bytes]

(8)

(32)

(324)

stride:
256

{128}

64
{32}

16

8
4

a) Origin2000

(10)

100

1000

4k 16k 64k 256k 1M 4M 16M

(2)

(9)

(46)

0.2

20

200
[16k] [1M]

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

array size [bytes]

(45)

(230)

stride:
128
{64}

32
{16}

8

4

b) Sun Ultra

1

10

100

1000

4k 16k 64k 256k 1M 4M 16M

(3)

(22)

(77)

0.45

4.5

45

450
[16k] [512k]

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

array size [bytes]

(6.7)

(49)

(171)

stride:
64

{32}

16
8
4

c) Intel PC

1

10

100

1000

4k 16k 64k 256k 1M 4M 16M

(3)

(22)

0.6

6

60

600
[64k] [512k]

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

array size [bytes]

(5)

(37)

(212) (127)

stride:
128
{64}

32
16
8

4

d) AMD PC

(Vertical grid lines indicate derived cache sizes, horizontal grid lines indicate derived latencies.)

Figure 3.10: Calibration Tool: Cache sizes, line sizes, and miss latencies

3.3 The Calibrator: Quantification of Memory Access Costs 61

1

10

100

1000

4k 16k 64k 256k 1M 4M 16M

(2)

(8)

0.25

2.5

25

250
[32k] [4M]

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

array size [bytes]

(8)

(32)

(436) (109)

stride:
256

{128}

64
{32}

16

8
4

a) Origin2000

(10)

100

1000

4k 16k 64k 256k 1M 4M 16M

(2)

(9)

(48)

0.2

20

200
[16k] [1M]

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

array size [bytes]

(45)

(240)

stride:
128
{64}

32
{16}

8

4

b) Sun Ultra

1

10

100

1000

4k 16k 64k 256k 1M 4M 16M

(3)

(22)

(68)

0.45

4.5

45

450
[16k] [512k]

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

array size [bytes]

(6.7)

(49)

(151)

stride:
64

{32}

16
8
4

c) Intel PC

1

10

100

1000

4k 16k 64k 256k 1M 4M 16M

(3)

(22)

0.6

6

60

600
[64k] [512k]

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

array size [bytes]

(5)

(37)

(217) (130)

stride:
128
{64}

32
16
8

4

d) AMD PC

(Vertical grid lines indicate derived cache sizes, horizontal grid lines indicate derived latencies.)

Figure 3.11: Calibration Tool: Cache sizes, line sizes, and replace times

62 3 Cost Factors in MMDBMS

Thesequential access memory bandwidthβs is derived form the scan experiment of
the previous section using a strides> ZL2.

Figures 3.11a through 3.11d depict the results of the second experiments for all
four machines. As expected, the derived cache sizes and cache line sizes are identi-
cal to those from then first experiment. Comparing the replace times here with the
latencies above, we observe the following. For L1 misses (L2 accesses), latency and
replace time are equal on each of the four machines. All four machines use inclusive
cache systems, hence we did not expect any other result. For L2 misses (i.e., main
memory accesses), however, we see a different image. On the Origin2000, the Sun,
and the AMD PC, replace time is higher than latency. On the Sun and the AMD PC,
the difference are just about 3% to 4% (195ns vs. 188ns and 180ns vs. 175ns, respec-
tively); on the Origin2000, however, it is 40% (406ns vs. 292ns). On the Intel PC,
replace time is 20% less than latency (102ns vs. 123ns).

Cache Associativity Above, we forced capacity misses in order to measure cache
sizes, line sizes and latencies. Now, to be able to measure the cache associativity, we
need to force conflict misses. Assuming the usually only the lower bits of a memory
address are used to determined the cache line to be used, we use rather large strides
when walking through the memory array. Further using strides that are powers of 2,
we ensure that the lower bits of subsequently accesses memory addresses are equal.
Successively increasing the stride from 1024 through array size and varying the ar-
ray size as above, conflict misses will occur as soon as the number of distinct spots
accessed in the array exceeds the cache’s associativity.

Figures 3.11a through 3.11d depict the respective results for all four machines.
The X-axis now gives the number of spots accessed, i.e., array size divided by stride.
Again, each curve represents a different stride. We can derive the following associa-
tivities. On the Origin2000, L1 is direct-mapped (1-way associative) and L2 is 2-way
associative; on the Sun, L1 is direct-mapped (1-way associative) and L2 is 4-way as-
sociative; on the Intel PC, L1 and L2 are both 4-way associative; and on then AMD
PC, L1 is 2-way associative and L2 is 4-way associative.

3.3.2 Calibrating the TLB

We use a similar approach as above to measureTLB miss costs. The idea here is to
force one TLB miss per iteration, but to avoid any cache misses. We force TLB misses
by using a stride that is larger than the system’s page size, and by choosing the array
size such that we access more distinct spots than there are TLB entries. Cache misses
will occur at least as soon as the number of spots accessed exceeds the number of
cache lines. We cannot avoid that. But even with less spots accessed, two or more
spots might be mapped to the same cache line, causing conflict misses. To avoid this,
we use strides that are not exactly powers of 2, but slightly bigger, shifted by L2 cache
line size, i.e.,s= 2x + ZL2.

Figure 3.13 shows the results for four machines. Again, the X-axis gives the num-
ber of spots accessed, and each curve represents a different stride. From Figure 3.13a
(Origin2000), e.g., we derive the following: Like above, we observe the base line of

3.3 The Calibrator: Quantification of Memory Access Costs 63

1

10

100

1000

1 2 4 8 16 32 64

<L1>

<L2>

0.25

2.5

25

250
[1] [2] <TLB>

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

spots accessed

<L1>

<L2>

stride:
67108864
33554432
16777216
8388608
4194304

2097152
1048576
524288
262144
131072
65536

32768
16384
8192
4096
2048
1024

a) Origin2000

1

10

100

1000

1 2 4 8 16 32 64

<L1>

<L2>

0.2

2

20

200
[1] [4] <TLB>

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

spots accessed

<L1>

<L2>

stride:
67108864
33554432
16777216
8388608
4194304

2097152
1048576
524288
262144
131072
65536

32768
16384
8192
4096
2048
1024

b) Sun Ultra

1

10

100

1000

1 2 4 8 16 32 64

<L1>

<L2>

0.45

4.5

45

450
[4] <TLB>

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

spots accessed

<L1>

<L2>

stride:
67108864
33554432
16777216
8388608
4194304

2097152
1048576
524288
262144
131072
65536

32768
16384
8192
4096
2048
1024

c) Intel PC

1

10

100

1000

1 2 4 8 16 32

<L1>

<L2>

0.6

6

60

600
[2] [4] <TLB>

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

spots accessed

<L1>

<L2>

stride:
67108864
33554432
16777216
8388608
4194304

2097152
1048576
524288
262144
131072
65536

32768
16384
8192
4096
2048
1024

d) AMD PC

(Vertical grid lines indicate derived associativities, horizontal grid lines indicate cache miss latencies.)

Figure 3.12: Calibration Tool: Cache associativities

64 3 Cost Factors in MMDBMS

1

10

100

1000

4 8 16 32 64 128 256 512 1k

(2)

(65)

0.25

2.5

25

250
[64] <L1>

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

spots accessed

(8)

(260)

stride:
65664

{32896}

16512
8320
4224

2176
1152

a) Origin2000

(10)

100

1000

4 8 16 32 64 128 256 512 1k

(2)

(55)

0.2

20

200
[64] <L1>

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

spots accessed

(275)

stride:
16448
{8256}

4160
2112
1088

b) Sun Ultra

1

10

100

1000

4 8 16 32 64 128 256 512 1k

(3)

(8)

0.45

4.5

45

450
[64] <L1>

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

spots accessed

(6.7)

(18)

stride:
8224

{4128}

2080
1056

c) Intel PC

1

10

100

1000

4 8 16 32 64 128 256 512 1k

(3)

(8)

(54)

0.6

6

60

600
[24] [320] <L1>

na
no

se
cs

 p
er

 it
er

at
io

n

cy
cl

es
 p

er
 it

er
at

io
n

spots accessed

(5)

(13)

(90)

stride:
8256

{4160}

2112
1088

d) AMD PC

(Vertical grid lines indicate derived number of TLB entries, horizontal lines indicate derived latencies.)

Figure 3.13: Calibration Tool: TLB entries and TLB miss costs

3.3 The Calibrator: Quantification of Memory Access Costs 65

8 nanoseconds (i.e., 2 cycles) per iteration. The smallest number of spots where the
performance decreases due to TLB misses is 64, hence, there must be 64 TLB entries.
The decrease at 64 spots occurs with strides of 32 KB or more, thus, the page size is
32 KB. Further, TLB miss latency is 236ns− 8ns= 228ns, or 57 cycles. Figure 3.13d
correctly reflects the Athlon’s two TLB levels with 32 and 256 entries, respectively.
The third step in the curves at 1024 spots is caused by L1 misses as L1 latency is 5
times higher than TLB latency on the Athlon. The same holds for the second step in
the PentiumIII curves (Figure 3.13c) at 512 spots. On the Origin2000 and on the Sun,
L1 misses also occur with more than 1024 spots accessed, but their impact is negligi-
ble as TLB latency is almost 10 times higher than L1 latency on these machines.

Due to their small size, TLBs are usually fully associative. Hence, we omit testing
the TLBs’ associativity.

3.3.3 Summary

Next to producing the graphs as depicted above, our calibration tool automatically
analyzes the measured data and derives the desired parameters. The final output looks
as follows (here: Origin2000):

CPU loop + L1 access: 8.18 ns = 2 cy
(delay: 401.74 ns = 100 cy)

caches:
level size linesize associativity miss-latency replace-time
1 32 KB 32 bytes 1-way 25.54 ns = 6 cy 23.94 ns = 6 cy
2 4 MB 128 bytes 2-way 290.34 ns = 73 cy 405.52 ns = 101 cy

TLBs:
level #entries pagesize miss-latency
1 64 32 KB 252.69 ns = 63 cy

Table 3.2 gathers the results for all four machines. The PCs have the highest L2
access latencies, probably as their L2 caches are running at only half the CPUs’ clock
speed. Main-memory access, however, is faster on the PCs than it is on the SGI and the
Sun. The TLB miss latency of the PentiumIII and the Athlon (TLB1) are very low, as
their TLB management is implemented in hardware. This avoids the costs of trapping
to the operating system on a TLB miss, that is necessary in the software controlled
TLBs of the other systems. The TLB2 miss latency on the Athlon is comparable to that
on the R10000 and the UltraSPARC. The Origin2000 has the highest memory latency,
but due to its large cache lines, it achieves better sequential memory bandwidth than
the Sun and the Intel PC.

The calibration tool and results for a large number of different hardware platforms
are available on our web site:http://www.cwi.nl/∼monet/.

66 3 Cost Factors in MMDBMS

SGI Origin2000 Sun Ultra Intel PC AMD PC

OS IRIX64 6.5 Solaris 2.5.1 Linux 2.2.14 Linux 2.2.14
CPU MIPS R10000 Sun UltraSPARC Intel PentiumIII AMD Athlon
CPU speed 250 MHz 200 MHz 450 MHz 600 MHz
main-memory size 16 * 4 GB 512 MB 512 MB 384 MB

L1 cache size ||L1|| 32 KB 16 KB 16 KB 64 KB
L1 cache line size ZL1 32 bytes 16 bytes 32 bytes 64 bytes
L1 cache lines |L1|L1 1024 1024 512 1024
L2 cache size ||L2|| 4 MB 1 MB 512 KB 512 KB
L2 cache line size ZL2 128 bytes 64 bytes 32 bytes 64 bytes
L2 cache lines |L2|L2 32,768 16,384 16,384 8192
TLB entries |TLB| 64 64 64 32
TLB2 entries |TLB2| - - - 256
page size ||Pg|| 32 KB 8 KB 4 KB 4 KB
TLB size ||TLB|| 2 MB 512 KB 256 KB 128 KB
TLB2 size ||TLB2|| - - - 1 MB
L1 associativity AL1 1-way 1-way 4-way 2-way
L2 associativity AL2 2-way 4-way 4-way 4-way
L1 miss latency lL1 24 ns = 6 cy. 30 ns = 6 cy. 42 ns = 19 cy. 45 ns = 27 cy.
L1 replace time rtL1 24 ns = 6 cy. 30 ns = 6 cy. 42 ns = 19 cy. 45 ns = 27 cy.
L2 miss latency lL2 292 ns = 73 cy. 188 ns = 38 cy. 123 ns = 55 cy. 175 ns = 103 cy.
L2 replace time rtL2 406 ns = 101 cy. 195 ns = 39 cy. 102 ns = 46 cy. 180 ns = 108 cy.
TLB miss latency lTLB 252 ns = 63 cy. 265 ns = 53 cy. 11 ns = 5 cy. 8 ns = 5 cy.
TLB2 miss latency lTLB2 - - - 77 ns = 46 cy.
ran. acc. bandwidth βrMem 243 MB/s 194 MB/s 212 MB/s 271 MB/s
seq. acc. bandwidth βsMem 555 MB/s 244 MB/s 484 MB/s 670 MB/s

Table 3.2: Calibrated Performance Characteristics

3.4 Further Observations

In the remainder of this chapter, we discuss further aspects of main-memory access,
such as parallel access and prefetching, and sketch some future hardware trends.

3.4.1 Parallel Memory Access

It is interesting to note that the calibrated latencies in Table 3.2 do not always confirm
the suggested latencies in the sequential scan experiment from Figure 3.7. For the
PentiumIII, the access costs per memory read of 52ns at a stride of 32 bytes, and
204ns at a stride of 128 bytes for the Origin2000, are considerably lower than their
memory latencies (135ns resp. 424ns), whereas in the case of the Sun Ultra, the scan
measurement at L2 line size almost coincides with the calibrated memory latency.
The discrepancies are caused byparallel memory accessthat can occur on CPUs that
feature both speculative execution and a non-blocking memory system. This allows a
CPU to execute multiple memory load instructions in parallel, potentially enhancing
memory bandwidth above the level of cache-line size divided by latency. Prerequisites
for this technique are a bus system with excess transport capacity and anon-blocking
cachesystem that allows multiple outstanding cache misses.

3.4 Further Observations 67

normal loop multi-cursor prefetch

for (int tot=i=0; i<N; i++) { for (int tot0=tot1=i=0, C=N/2; for (int tot=i=0; i<N; i++) {
i<C; i++) { #prefetch buf[i+32] freq=32

tot += buf[i]; tot0+= buf[i]; tot += buf[i];
tot1+= buf[i+C];

} } int tot = tot0+ tot1; }

5.88 cycles/addition 3.75 cycles/addition 3.88→ 2 cycles/addition

Figure 3.14: Three ways to add a buffer of integers, and costs per addition on
the Origin2000

To answer the question what needs to be done by an application programmer to
achieve these parallel memory loads, let us consider a simple programming loop that
sums an array of integers. Figure 3.14 shows three implementations, where the left-
most column contains the standard approach that results in sequential memory loads
into the buf[size] array. An R10000 processor can continue executing memory load
instructions speculatively until four of them are stalled. In this loop, that will indeed
happen if buf[i], buf[i+1], buf[i+2], and buf[i+3] are not in the (L2) cache. However,
due to the fact that our loop accesses consecutive locations in thebuf array, these
four memory references request the same 128-byte L2 cache line. Consequently, no
parallel memory access takes place. If we assume that this loop takes 2 cycles per
iteration6, we can calculate that 32 iterations cost 32*2+ 124= 188 cycles (where
124 is the memory latency on our Origin2000); a total mean cost of 5.88 cycles per
addition.

Parallel memory access can be enforced by having one loop that iterates two cur-
sors through the buf[size] array (see the middle column of Figure 3.14). This causes 2
parallel 128 byte (=32 integer) L2 cache line fetches from memory per 32 iterations,
for a total of 64 additions. On the R10000, the measured maximum memory band-
width of the bus is 555MB/s, so fetching two 128-byte cache lines in parallel costs
only 112 cycles (instead of 124+ 124). The mean cost per addition is hence 2+
112/64= 3.75 cycles.

It is important to note that parallel memory access is achieved only if the ability
of the CPU to execute multiple instructions speculatively spans multiple memory ref-
erences in the application code. In other words, the parallel effect disappears if there
is too much CPU work between two memory fetches (more than 124 cycles on the
R10000) or if the instructions are interdependent, causing a CPU stall before reaching
the next memory reference. For database algorithms this means that random access
operations like hashing will not profit from parallel memory access, as following a
linked list (hash bucket chain) causes one iteration to depend on the previous; hence a

6As each iteration of our loop consists of a memory load (buf[i]), an integer addition (of “total” with this
value), an integer increment (of i), a comparison, and a branch, the R10000 manual suggests a total cost of
minimally 6 cycles. However, due to the speculative execution in the R10000 processor, this is reduced to
2 cycles on the average.

68 3 Cost Factors in MMDBMS

memory miss will block execution. Only sequential algorithms with CPU processing
costs less than the memory latency will profit, like in the simple scan experiment from
Figure 3.7. This experiment reaches optimal parallel bandwidth when the stride is
equal to this L2 cache line size. As each loop iteration then requests one subsequent
cache line, modern CPUs will have multiple memory loads outstanding, executing
them in parallel. Results are summarized at the bottom of Table 3.2, showing the par-
allel effect to be especially strong on the Origin2000, the PentiumIII, and the Athlon.
In other words, if the memory access pattern isnot sequential (like in equi-join), the
memory access penalty paid on these systems is actually much higher than suggested
by Figure 3.7, but determined by the latencies from Table 3.2.

3.4.2 Prefetched Memory Access

Computer systems with a non-blocking cache can shadow memory latency by per-
forming a memory fetch well before it is actually needed. CPUs like the R10000, the
PentiumIII, the Athlon, and the newer SPARC Ultra2 models have specialprefetch-
ing instructionsfor this purpose. These instructions can be thought of as memory
load instructions that do not deliver a result. Their only side effect is a modification
of the status of the caches. Mowry describes compiler techniques to generate these
prefetching instructions automatically [Mow94]. These techniques optimize array ac-
cesses from within loops when most loop information and dependencies are statically
available, and as such are very appropriate for scientific code written in FORTRAN.
Database code written in C/C++, however, does not profit from these techniques as
even the most simple table scan implementation will typically result in a loop with
both a dynamic stride and length, as these are (dynamically) determined by the width
and length of the table that is being scanned. Also, if table values are compared or
manipulated within the loop using a function call (e.g., comparing two values for
equality using a C function looked up from some ADT table, or a C++ method with
late binding), the unprotected pointer model of the C/C++ languages forces the com-
piler to consider the possibility of side effects from within that function; eliminating
the possibility of optimization.

In order to provide the opportunity to still enforce memory prefetching in such
situations, the MipsPRO compiler for the R10000 systems of Silicon Graphics allows
passing of explicit prefetching hints by use of pragma’s, as depicted in the rightmost
column of Figure 3.14. This pragma tells the compiler to request the next cache line
once in every 32 iterations. Such a prefetch-frequency is generated by the compiler
by applying loop unrolling (it unrolls the loop 32 times and inserts one prefetch in-
struction). By hiding the memory prefetch behind 64 cycles of work, the mean cost
per addition in this routine is reduced to 2+ ((124-64)/32) = 3.88 cycles. Optimal
performance is achieved in this case when prefetching two cache lines ahead every
32 iterations (#prefetch buf[i+64] freq=32). The 124 cycles of latency are then to-
tally hidden behind 128 cycles of CPU work, and a new cache line is requested every
64 cycles. This setting effectively combines prefetching with parallel memory access
(two cache lines in 128 cycles instead of 248), and reduces the mean cost per addition
to the minimum 2 cycles; three times faster than the simple approach.

3.4 Further Observations 69

3.4.3 Future Hardware Features

In spite of memory latency staying constant, hardware manufacturers have been able
to increase memory bandwidth in line with the performance improvements of CPUs,
by working with ever wider lines in the L1 and L2 caches. As cache lines grew
wider, buses also did. The latest Sun UltraII workstations, for instance, have a 64-byte
L2 cache line which is filled in parallel using a 576 bits wide PCI bus (576= 64*8
plus 64 bits overhead). The strategy of doubling memory bandwidth by doubling the
number of DRAM chips and bus lines is now seriously complicating system board
design. The Rambus [Ram96] memory standard eliminates this problem by providing
an “protocol-driven memory bus”. Instead of designating one bit in the bus for one
bit of data transported to the cache line, this new technology serializes the DRAM
data into packets using a protocol and sends these packets over a thin (16-bit) bus that
runs at very high speeds (up to 800MHz). While this allows for continued growth
in memory bandwidth, it does not provide the same perspective for memory latency,
as Rambus still needs to access DRAM chips, and there will still be the relatively
long distance for the signals to travel between the CPU and these memory chips on
the system board; both factors ensuring a fixed startup cost (latency) for any memory
traffic.

A radical way around the high latencies mandated by off-CPU DRAM systems is
presented in the proposal to integrate DRAM and CPU in a single chip called IRAM
(Intelligent RAM) [PAC+97]. Powerful computer systems could then be built using
many such chips. Finding a good model for programming such a highly parallel sys-
tems seems one of the biggest challenges of this approach. Another interesting pro-
posal worth mentioning here has been “smarter memory” [MKW+98], which would
allow the programmer to give a “cache-hint” by specifying the access pattern that is
going to be used on a memory region in advance. This way, the programmer is no
longer obliged to organize his data structures around the size of a cache line. Instead,
the cache adapts its behavior to the needs of the application. Such a configurable
system is in some sense a protocol-driven bus system, so Rambus is a step in this
direction. However, both configurable memory access and IRAM have not yet been
implemented in custom hardware, let alone in OS and compiler tools that would be
needed to program them usefully.

Recent developments concerning memory caches are to move the L2 cache closer
to the CPU, either locate it on the same multi-chip module (e.g., Intel’s first PentiumIII
“Katmai”, or AMD’s first Athlon generation) or even include it on the CPU’s die
(e.g., Intel’s latest PentiumIII “Coppermine”, or AMD’s latest Athlon “Thunderbird”).
While reducing L2 latency — the L2 caches now operate at half or even full CPU
speed — these trends do not reduce the memory latency. Further, on-chip caches are
usually smaller than off-chip caches and hence provide even less potential to avoid
memory accesses. Similarly, additional L3 caches — although increasing the total
cache capacity — cannot reduce memory latency, but rather might even increase it
due to an increased management overhead.

Concerning CPU technology, it is anticipated [Sem97] that the performance ad-
vances dictated by Moore’s law [Moo65] will continue well into the millennium.

70 3 Cost Factors in MMDBMS

However, performance increase will also be brought by more parallelism within the
CPU. The upcoming IA-64 architecture has a design called Explicitly Parallel In-
struction Computing (EPIC) [ACM+98], which allows instructions to be combined in
bundles, explicitly telling the CPU that they are independent. The IA-64 is specifically
designed to be scalable in the number of functional units, so while newer versions are
released, more and more parallel units will be added. This means that while current
PC hardware uses less parallel CPU execution than the RISC systems, this will most
probably change in the new 64-bit PC generation.

Summarizing, we have identified the following ongoing trends in modern hard-
ware:

• CPU performance keeps growing with Moore’s law for years to come.

• A growing part of this performance increase will come from parallelism within
the CPU.

• New bus technology will provide sufficient growth in memory bandwidth.

• Memory latency will not improve significantly.

This means that the failure of current DBMS technology to properly exploit-
ing memory and CPU resources of modern hardware [ADHW99, KPH+98, BGB98,
TLPZT97] will grow worse. Modern database architecture should therefore take these
new hardware issues into account. With this motivation, we investigate in the follow-
ing new approaches to large main-memory equi-joins, that specifically aim at optimiz-
ing resource utilization of modern hardware.

Chapter 4

Generic Database Cost Models
for Hierarchical Memory
Systems

Accurate prediction of operator execution time is a prerequisite for database query
optimization. Although extensively studied for conventional disk-based DBMSs, cost
modeling in main-memory DBMSs is still an open issue. Recent database research
has demonstrated that memory access is more and more becoming a significant—
if not the major—cost component of database operations. If used properly, fast but
small cache memories—usually organized in cascading hierarchy between CPU and
main memory—can help to reduce memory access costs. However, they make the cost
estimation problem more complex.

In this chapter, we propose a generic technique to create accurate cost functions
for database operations. We identify a few basic memory access patterns and provide
cost functions that estimate their access costs for each level of the memory hierarchy.
The cost functions are parameterized to accommodate various hardware characteris-
tics appropriately. Combining the basic patterns, we can describe the memory access
patterns of database operations. The cost functions of database operations can auto-
matically be derived by combining the basic patterns’ cost functions accordingly.

To validate our approach, we performed experiments using our DBMS prototype
Monet. The results presented here confirm the accuracy of our cost models for differ-
ent operations.

Aside from being useful for query optimization, our models provide insight to tune
algorithms not only in a main-memory DBMS, but also in a disk-based DBMS with a
large main-memory buffer cache.

72 4 Generic Database Cost Models

4.1 Related Work and Historical Development

Database cost models provide the foundation for query optimizers to derive an ef-
ficient execution plan. Such models consist of two parts: a logical and a physical
component. The former is geared toward estimation of the data volumes involved.
Usually, statistics about the data stored in the database are used to predict the amount
of data that each operator has to process. The underlying assumption is that a query
plan that has to process less data will also consume less resources and/or take less time
to be evaluated. The logical cost component depends only on the data stored in the
database, the operators in the query, and the order in which these operators are to be
evaluated (as specified by the query execution plan). Hence, the logical cost compo-
nent is independent of the algorithm and/or implementation used for each operator.

The problem of (intermediate) result size estimation has been intensively studied
in literature (cf., Section 2.2). In this thesis, we focus on the physical cost component.
Therefore, we assume a perfect oracle to predict the data volumes.

Given the data volumes, the physical cost component is needed to discriminate
the costs of the various algorithms and implementations of each operator. The query
optimizer uses this information to choose the most suitable algorithm and/or imple-
mentation for each operator.

Given the fact that disk-access used to be the predominant cost factor, early phys-
ical cost functions just counted the number of I/O operations to be executed by each
algorithm [Gra93]. Any operation that loads a page from disk into the in-memory
buffer pool or writes a page from the buffer back to disk is counted as an I/O opera-
tion. However, disk systems depict significant differences in cost (in terms of time) per
I/O operation depending on the access pattern. Sequentially reading or writing con-
secutive pages causes less cost per page than accessing scattered pages in a random
order. Hence, more accurate cost models discriminate between random and sequen-
tial I/O. The cost for sequential I/O is calculated as the data volume1 divided by the
I/O bandwidth. The cost for random I/O additionally considers the seek latency per
operation.

With memory chips dropping in price while growing in capacity, main memory
sizes grow as well. Hence, more and more query processing work is done in main
memory, trying to minimize disk access as far as possible in order to avoid the I/O
bottleneck. Consequently, the contribution of pure CPU time to the overall query
evaluation time becomes more important. Cost models are extended to model CPU
costs, usually in terms of CPU cycles (scored by the CPU’s clock speed to obtain the
elapsed time).

CPU cost used to cover memory access costs [LN96, WK90]. This implicitly
assumes that main memory access costs are uniform, i.e., independent of the mem-
ory address being accessed and the order in which different data items are accessed.
However, recent database research has demonstrated that this assumption does not
hold (anymore) [ADHW99, BMK99]. With hierarchical memory systems being used,
access latency varies significantly, depending on whether the requested data can be

1i.e., number of sequential I/O operations multiplied by the page size

4.2 Outline 73

found in (any) cache, or has to be fetch from main memory. The state (or contents)
of the cache(s) in turn depends on the applications’ access patterns, i.e., the order in
which the required data items are accessed. Furthermore, while CPU speed is con-
tinuously experiencing an exponential growth, memory latency has hardly improved
over the last decade.2 Our detailed analysis of these issues in Section 3.2 comes to
the conclusion that memory access has become a significant cost factor—not only for
main memory databases—which cost models need to reflect.

In query execution, the memory access issue has been addressed by designing new
cache-conscious data structures [RR99, RR00, ADHS01] and algorithms [SKN94,
MBK00b]. On the modeling side, however, nothing has been published yet consider-
ing memory access appropriately.

4.2 Outline

In this chapter, we address the problem of how to model memory access costs of
database operators appropriately. As it turns out to be quite complicated to derive
proper memory access cost functions for various operations, we develope a new tech-
nique to automatically derive such cost functions. The basic idea is to describe the
data access behavior of an algorithm in terms of a combination of basic access pat-
terns (such as ”sequential”or ”random”). The actual cost function is then obtained by
combining the patterns’ cost functions (as derived in this chapter) appropriately. Us-
ing a unified hardware model that covers the cost-related characteristics of both main
memory and disk access, it is straight forward to extend our approach to consider I/O
cost as well. Gathering I/O and memory cost models into a single common framework
is a new approach that simplifies the task of generating accurate cost functions.

Section 4.3 presents a simplified abstract representation of data structures and
identifies a number of basic access patterns to be performed on such data structures.
Equipped with these tools, we show how to specify the data access patterns of database
algorithms by combining basic patterns. In Section 4.4, we derive the cost function
for our basic access patterns and Section 4.5 provides rules how to obtain the cost
functions of database algorithms from their representation introduced in Section 4.3.
Section 4.7 contains some experimental results validating the obtained cost functions
and Section 4.8 will draw some conclusions.

4.3 The Idea

Our recent work on main-memory database algorithms suggests that memory access
cost can be modeled by estimating the number of cache missesM and scoring them
with their respective miss latencyl [MBK02]. This approach is similar to the one
used for detailed I/O cost models. The hardware discussion in Section 3.1 shows, that

2Wider busses and raised clock speeds, such as with DDR-SDRAM or RAMBUS, help to keep memory
bandwidth growing at almost the pace of CPU speed, however, these techniques do not improve memory
access latency. See also Section 3.2.

74 4 Generic Database Cost Models

also for main-memory access, we have to distinguish between sequential and random
access patterns. However, in contrary to disk access, we now have multiple levels of
cache with varying characteristics. Hence, the challenge is to predict the number and
kind of cache missesfor all cache levels. Our hypothesis is, that we can treat all cache
levels individually, though equally, and calculate the total cost as the sum of the cost
for all levels:

TMem =

N∑
i=1

(M si · l
s
i +M ri · l

r
i). (4.1)

With the hardware modeled as described in Section 3.1 and the hardware param-
eters measured by our calibration tool (see Section 3.3), the remaining challenge is
to estimate the number and kind of cache misses per cache level for various database
algorithms. The task is similar to estimating the number and kind of I/O operations
in traditional cost models. However, our goal is to provide a generic technique for
predicting cache miss rates of various database algorithms. Nevertheless, we want to
sacrifice as little accuracy as possible to this generalization.

To achieve the generalization, we introduce two abstractions. Our first abstraction
is a unified description of data structures. We call itdata regions. The second are
basic data access patterns. Both of them are driven by the goal to keep the models as
simple as possible, but as detailed as necessary. Hence, we try to ignore any details
that are not significant for our purpose (predicting cache miss rates) and only focus
on the relevant parameters. The following paragraphs will present both abstractions
in detail.

4.3.1 Data Regions

We model data structures asdata regions. D denotes the set of data regions. A data
regionR ∈ D consists of|R| data itemsof sizeR (in bytes). We call|R| the lengthof
regionR, R its widthand||R|| = |R| ·R its size. Further, we define thenumber of cache
lines covered by Ras|R|Z = d||R||/Ze, and thenumber of data items that fit in the cache
as|C|R =

⌈
C/R

⌉
.

A (relational) database table is hence represented by a regionR with |R| being the
table’s cardinality andR being the tuple size (or width). Similarly, more complex
structures like trees are modeled by regions with|R| representing the number of nodes
andR representing the size (width) of a single node.

4.3.2 Basic Access Patterns

Data access patterns vary in their referential locality and hence in their cache behavior.
Thus, not only the cost (latency) of cache misses depend on the access pattern, but
also the number of cache misses that occur. Each database algorithm describes a
different data access pattern. This means, each algorithm requires an individual cost
function to predict its cache misses. Deriving each cost function ”by hand”is not
only exhaustive and time consuming, but also error-prone. Our hypothesis is that
we only need to specify the cost functions of a few basic access patterns. Given

4.3 The Idea 75

these basic patterns and their cost functions, we could describe the access patterns of
database operations as combinations of basic access patterns, and derive the resulting
cost functions automatically.

In order to identify the relevant basic access patterns, we first have to analyze
the data access characteristics of database operators. We classify database operations
according to the number of operands.

Unary operators—such as, e.g., table scan, selection, projection, sorting, hashing,
aggregation, or duplicate elimination—read data from one input region and write data
to one output region. Data access can hence be modeled by two cursors, one for the
input and one for the output. The input cursor traverses the input region sequentially.
For table scan, selection, and projection, the output cursor also simply progresses
sequentially with each output item. When building a hash table, the output cursor
”hops back and forth”in a non-sequential way. In practice, the actual pattern is not
completely random, but rather depends on the physical order and attribute value dis-
tribution of the input data as well as on the hash function. In our case, i.e., knowing
only the algorithm, but not the actual data, it is not possible to make more accurate
(and usable) assumptions about the pattern described by the output cursor. Hence,
we assume that the output region is accessed in a completely random manner. This
assumption should not be too bad, as a ”good”hash function typically destroys any
sorting order and tends/tries to level out skew data distributions.

Sort algorithms typically perform a more complicated data access pattern. In Sec-
tion 4.7.2, we will present quick-sort as an example to demonstrate how such patterns
can be specified as combinations of basic patterns. Aggregation and duplicate elimina-
tion are usually implemented using sorting or hashing. Thus, they incur the respective
patterns.

Though also a unary operation, data partitioning takes a separate role. Again, the
input region is traversed sequentially. However, modeling the output cursor’s access
pattern as purely random is too simple. In fact, we can do better. Suppose, we want
to partition the input region intom output regions. Then, we know that the access
within each region is sequential. Hence, we model the output access as anestedpat-
tern. Each region is a separatelocal cursor, performing a sequential pattern. A single
global cursorhops back and forth between the regions. Similar to the hashing scenario
described before, the order in which the different region-cursors are accessed—i.e., the
global pattern—depends on the partitioning criterion (e.g., hash- or range-based) and
the physical order and attribute value distribution of the input data. Again, it is not
possible to model these dependencies in a general way without detailed knowledge
about the actual data to process. Purely from the algorithm, we can only deduce a
random order.

Concerning binary operations, we focus our discussion on join. The appropriate
treatment of union, intersection and set-difference can be derived respectively. Binary
operators have two inputs and a single output. In most cases, one input—we call itleft
or outer input—is traversed sequentially. Access to the other—right or inner—input
depends on the algorithm and the data of the left input. A nested loop join performs
a complete sequential traversal over the whole inner input for each outer data item. A
merge join—assuming both inputs are already sorted—sequentially traverses the inner

76 4 Generic Database Cost Models

. . .

u

R

1 2 3 |R|

_
_

||R||

Figure 4.1: Single Sequential Traversal:s trav(R,u)

. . .

u

R

3 1 2|R|

_
_

||R||

Figure 4.2: Single Random Traversal:r trav(R,u)

input once while the outer input is traversed. A hash join—provided there is already
a hash table on the inner input—performs an ”un-ordered”access pattern on the inner
input’s hash table. As discussed above, we assume a uniform random access.

From this discussion, we identify the following basic access patterns as eminent
in the majority of relational algebra implementations. LetR ∈ D be a data region.

single sequential traversal: s trav(R[,u])
A sequential traversal sequentially sweeps overR, accessing each data item in
R exactly once. The optional parameteru gives the number of bytes that are
actually used of each data item. If not specified, we assume that all bytes are
used, i.e.,u = R. If specified, we require 0< u ≤ R. u is used to model the fact
that an operator, e.g., an aggregation or a projection (either as separate operator
or in-lined with another operator), accesses only a subset of its input’s attributes.
For simplicity of presentation, we assume that we always accessu consecutive
bytes. Though not completely accurate, this is a reasonable abstraction in our
case.3 Figure 4.1 shows a sample sequential traversal.

repetitive sequential traversal: rs trav(r,d,R, [,u])
A repetitive sequential traversal performsr sequential traversals overR after
another.d specifies, whether all traversals sweep overR in the same direction,
or whether subsequent traversals go in alternating directions. The first case—
uni-directional—is specified byd = uni. The second case—bi-directional—is

3In case theu bytes are rather somehow spread across the whole item widthR, say ask timesu′ bytes
(k · u′ = u), one can replaces trav(R,u) by s trav(R′,u′) with R′ = R/k and|R′ | = |R| · k.

4.3 The Idea 77

R1

2

mR

R

. . .

. . .

. . .

.

.

.

global cursorlocal cursors

1 2 3 k

Figure 4.3: Interleaved Multi-Cursor Access:nest(R,m, s trav(R,u), seq, bi)

specified byd = bi.

single random traversal: r trav(R[,u])
Like a sequential traversal, a random traversal accesses each data item inR ex-
actly once, reading or writingu bytes. However, the data items are not accessed
in the order they are stored, but rather randomly. Figure 4.2 depicts a sample
random traversal.

repetitive random traversal: rr trav(r,R[,u])
A repetitive random traversal performsr random traversals overRafter another.
We assume that the permutation orders of two subsequent traversals are inde-
pendent of each other. Hence, there is no point in discriminating uni-directional
and bi-directional accesses, here. Therefore, we omit parameterd.

random access:r acc(r,R[,u])
Random access hitsr randomly chosen data items inR after another. We as-
sume, that each data item may be hit more than once, and that the choices are
independent of each other. Even withr ≥ |R| we do not require that each data
item is accessed at least once.

interleaved multi-cursor access:nest(R,m,P,O[,D])
A nested multi-cursor access models a pattern whereR is divided intom (equal-
sized) sub-regions. Each sub-region has its own local cursor. All local cursors
perform the same basic pattern, given byP. O specifies, whether the global
cursor picks the local cursors randomly (O = ran) or sequentially (O = seq). In

78 4 Generic Database Cost Models

the latter case,D specifies, whether all traversals of the global cursor across the
local cursors use the same direction (D = uni), or whether subsequent traversals
use alternating directions (D = bi). Figure 4.3 shows a sample interleaved
multi-cursor access.

A similar idea has been used by Chou and DeWitt in their buffer management
algorithmDBMIN [CD85]. DBMIN is based on a model for relational query behavior
calledquery locality set model(QLSM). QLSM is founded on the observation that
basic database operations (like scans, index scans, joins, etc.) could be characterized
by a limited number of reference patterns to database pages. Chou and DeWitt propose
three classes of reference patterns: sequential, random, and hierarchical. DBMIN
exploits the information provided by QLSM to choose the most suitable pages replace
strategy and estimate the proper buffer size to be used for each relation in a given
query.

4.3.3 Compound Access Patterns

Database operations access more than one data region, usually at least their input(s)
and their output. This means, they perform more complex data access patterns than
the basic ones we introduced in the previous section. In order to model these complex
patterns, we now introducecompound data access patterns. Unless we need to explic-
itly distinguish between basic and compound data access patterns, we refer to both as
data access patterns, or simply patterns. We usePb, Pc, andP = Pb ∪ Pc to denote
the set of basic access patterns, compound access patterns, and all access patterns,
respectively. We requirePb ∩ Pc = ∅.

Be P1, . . . ,Pp ∈ P (p > 1) data access patterns. There are two principle ways
to combine two or more patterns. Either the patterns are executedone after the other
or they are executedconcurrently. We call the first combinationsequential execution
and denote it by operator⊕ : P → P; the second combination representsconcurrent
executionand is denoted by operator� : P → P. The result of either combination is
again a (compound) data access pattern. Hence, we can apply⊕ and� repeatedly to
describe complex patterns. By definition,� is commutative, while⊕ is not. In case
both� and⊕ are used to describe a complex pattern,� has precedence over⊕, i.e.,

P1 � P2 � P3 ⊕ P4 � P5 ⊕ P6 ≡ ((P1 � P2 � P3) ⊕ (P4 � P5) ⊕ P6).

We use bracketing to overrule these assumptions or to avoid ambiguity. Further, we
use the following notation to simplify complex terms where necessary and appropri-
ate:

} ∈ {⊕,�} : P1 } . . . } Pp ≡ }(P1, . . . ,Pp) ≡ }|pq=1(Pq).

Table 4.1 gives some examples how to describe the access patterns of some typ-
ical database algorithms as compound patterns. For convenience, some re-occurring
compound access patterns are assigned a new name.

4.4 Deriving Cost Functions 79

algorithm pattern description name

W← select(U) s trav(U) � s trav(W)

W← nestedloop join(U,V) s trav(U) � rs trav(|U |, uni,V) � s trav(W)

=: nl join(U,V,W)

W← zick zackjoin(U,V)a s trav(U) � rs trav(|U |, bi,V) � s trav(W)

V′ ← hashbuild(V) s trav(V) � r trav(V′)

=: build hash(V,V′)

W← hashprobe(U,V′) s trav(U) � r acc(|U |,V′) � s trav(W)

=: probe hash(U,V′,W)

W← hashjoin(U,V) build hash(V,V′) ⊕ probe hash(U,V′,W)

=: h join(U,V,W)

{U j}|
m
j=1 ← cluster(U,m) s trav(U) � nest({U j}|

m
j=1,m, s trav(U j), ran)

=: part(U,m, {U j}|
m
j=1)

W← part nl join(U,V,m) part(U,m, {U j}|
m
j=1) ⊕ part(V,m, {Vj}|

m
j=1)

⊕ nl join(U1,V1,W1) ⊕ . . . ⊕ nl join(Um,Vm,Wm)

W← part h join(U,V,m) part(U,m, {U j}|
m
j=1) ⊕ part(V,m, {Vj}|

m
j=1)

⊕ h join(U1,V1,W1) ⊕ . . . ⊕ h join(Um,Vm,Wm)

anested-loop-join with alternating traversal direction on inner table, aka. “boustrophedonism”

Table 4.1: Sample Data Access Patterns (U,V,V′,W ∈ D)

Our hypothesis is, that we only need to provide an access pattern description as
depicted in Table 4.1 for each operation we want to model. The actual cost function
can then be created automatically, provided we know the cost functions for the basic
patterns, and the rules how to combine them. To verify this hypothesis, we will now
first estimate the cache miss rates of the basic access patterns and then derive rules
how to calculate the cache miss rates of compound access patterns.

4.4 Deriving Cost Functions

In the following sections,N depicts the number of cache levels andi iterates over all
levels: i ∈ {1, . . . ,N}. For better readability, we will omit the indexi wherever we do
not refer to a specific cache level, but rather to all or any.

4.4.1 Preliminaries

For each basic pattern, we need to estimate both sequential and random cache misses
for each cache level. Given an access patternP ∈ P, we describe the number of misses
per cache level as pair

~M i(P) =
〈
M si (P),M ri (P)

〉
∈ N × N (4.2)

80 4 Generic Database Cost Models

containing the number of sequential and random cache misses. Obviously, the ran-
dom patterns cause only random misses, but no sequential misses. Consequently, we
always set

M si (T) = 0 for T ∈ {r trav, rr trav, r acc}.

Sequential traversals can achieve sequential latency (i.e., exploit full excess band-
width), only if all the requirements listed in Section 3.1.2.2 are fulfilled. Sequential
access is fulfilled by definition. The hardware requirements (non-blocking caches and
super-scalar CPUs allowing speculative execution) are covered by the results of our
calibration tool. In case these properties are not given, sequential latency will be the
same as random latency. However, the pure existence of these hardware features is not
sufficient to achieve sequential latency. Rather, the implementation needs to be able to
exploit these features. Data dependencies in the code may keep the CPU from issuing
multiple memory requests concurrently. It is not possible to deduce this information
only from the algorithm without knowing the actual implementation. But even without
data dependencies, multiple concurrent memory requests may hit the same cache line.
In case the number of concurrent hits to a single cache line is lower than the maximal
number of outstanding memory references allowed by the CPU, only one cache line is
loaded at a time.4 Though we can say how many subsequent references hit the same
cache line (see below), we do not know how many outstanding memory references the
CPU can handle without stalling.5 Hence, it is not possible to automatically guess,
whether a sequential traversal can achieve sequential latency or not. For this reason,
we offer two variants ofs trav andrs trav. s travs andrs travs assume a scenario that
can achieve sequential latency whiles travr andrs travr do not. The actual number of
misses is equal in both cases. However, in the first case, we get only sequential but no
random misses, while the second case causes only random but no sequential misses:

M ri (Ts()) = M si (Tr()) = 0 for T ∈ {s trav, rs trav}.

Unless we need to explicitly distinguish between both variants, we will uses travx

respectivelyrs travx to refer to both (x ∈ {s, r}). When describing the access pattern
of a certain algorithm, we will use the variant that fits to the actual code.

4.4.2 Single Sequential Traversal

Be R a data region andP = s travx(R,u) (x ∈ {s, r}) a sequential traversal overR. As
mentioned above, we have

M ri (s travs(R,u)) = 0 and M si (s travr(R,u)) = 0.

To calculateM x
i (s travx(R,u)), we distinguish two cases:R− u < Z andR− u ≥ Z.

4For a more detailed discussion, we refer the interested reader to Section 3.2.
5Our calibration results can only indicate, whether the CPU can handle outstanding memory references

without stalling, but not how many it can handle concurrently.

4.4 Deriving Cost Functions 81

R

RR

R

R

R

R

R

u u u
Z Z ZZZZZZ

Z Z Z Z Z Z Z Z

_
_

_
_

_
_

_
_

_
_

_
_

−u > Z_
_

u u u

_

_ _ _

_ _
R

R

a)

b)

−u < Z_
_

_R−u

_R−u _R−u _R−u

_R−u _R−u

Figure 4.4: Impact ofR− u on the Number of Cache Misses

CaseR− u < Z. In this case, the gap between two adjacent accesses that is not
touched at all is smaller than a single cache line. Hence, the cache line containing this
gap is loaded to serve at least one of the two adjacent accesses (cf., Fig. 4.4a). Thus,
during a sweep overR with R− u < Z all cache lines coved byR have to be loaded,
i.e.,

M x
i (s travx(R,u)) = |R|Zi . (4.3)

CaseR− u ≥ Z. In this case, the gap between two adjacent accesses that is not
touched at all spans at least a complete cache line. Hence, not all cache lines coved
by Rhave to be loaded during a sweep overRwith R− u ≥ Z (cf., Fig. 4.4b). Further,
no access can benefit from a cache line already loaded by a previous access to another
spot. Thus, each access to an item inR requires at least

⌈
u
Z

⌉
cache lines to be loaded.

We get

M x
i (s travx(R,u)) ≥ |R| ·

⌈
u
Zi

⌉
.

However, withu > 1 it may happen that — depending on the alignment ofu within
a cache line — one additional cache line has to be loaded per access. Figure 4.5 depicts
such a scenario.

The actual alignment of eachu in a sweep is determined by two parameters. First,
it of course depends on the alignment of the first item inR, i.e., the alignment ofR
itself. Assuming a 1 byte access granularity,R can be aligned onZ places within
a cache line. Second,R determines whether all items inR are aligned equally, or
whether their alignment changes throughoutR. In caseR is a multiple ofZ, all items
in R are equally aligned as the first one. Otherwise, the alignment varies throughout
R, but picking only Z

gcd
{
Z,R

} out of theZ theoretically possible places. As we do not

know anything about the alignment ofR, there is no way of reasonably exploiting the
information we just learned about the impact ofR on the alignment shift. Hence, all
we can do is assuming that allZ possibilities occur equally often. All we need to do
now, is count how many of theseZ possibilities yield an additional cache miss. For

82 4 Generic Database Cost Models

x−1:

Z Z Z

1:

0:

x:

x+1:

x+v:

missesZ:

misses

+1 misses

Z
u

Z
u

Z
u

modx = Z−(u Z)

mod Zv = Z−1−x = (u−1)

x−1 v 1

x v 1

v 11

v 1

1

1

...
...

1

u

u

x−1 u

x u

v−1x 1 u

x v

x v 1 u

u

Figure 4.5: Impact of Alignment on the Number of Cache Misses

convenience, we define

x m̂ody =

y, if x mody = 0,

x mody, else.

Whenu is aligned on the first position (i.e., the first byte) in a cache line, no more than⌈
u
Z

⌉
cache lines have to be loaded to access wholeu (cf., Fig. 4.5). In this case, the

lastZ − (u m̂odZ) bytes in the last cache line loaded foru are not used byu. Hence,
shiftingu’s position by up toZ− (u m̂odZ) also does not require any additional cache
miss. Only the remaining

Z − 1− (Z − (u m̂odZ))

= (u m̂odZ) − 1

=

 Z − 1, if u modZ = 0

(u modZ) − 1, else

u>0
= (u− 1) modZ

positions will yield one additional cache miss (cf., Fig. 4.5). Putting all pieces to-
gether, we get:

4.4 Deriving Cost Functions 83

M x
i (s travx(R,u)) = |R| ·

(⌈
u
Zi

⌉
+

(u− 1) modZi

Zi

)
. (4.4)

Figure 4.6 demonstrates the impact ofu on the number of cache misses. The points
show the number of cache misses measured with various alignments. ”align = 0”and
”align = −1”make up the two extreme cases. In the first case,u is aligned on the
first byte of a cache line; in the second case,u starts on the last byte of a cache
line. ”average”depicts the average over all possible alignments. The dotted curve
and the dashed curve represent Equations (4.5) and (4.3), respectively, which ignore
u and assume that allR bytes of each item are touched. The solid curve represents
the identical Equations (4.4) and (4.6) which consideru. The graphs show, thatu has
a significant impact on the number of cache misses, and that our formulas correctly
predict the average impact.

4.4.3 Single Random Traversal

Be R a data region andP = r trav(R,u) a random traversal overR. As mentioned
above, we have

M si (r trav(R,u)) = 0.

Like with sequential traversal, we distinguish two cases:R− u < Z andR− u ≥ Z.

CaseR− u < Z. With the untouched gaps being smaller than cache line size,
again all cache lines coved byR have to be accessed. Hence,M r(P) ≥ |R|Z. But
due to the random access pattern, two locally adjacent accesses are not temporally
adjacent. Thus, if||R|| exceeds the cache size, a cache line that serves two or more
(locally adjacent) accesses may be replaced by another cache line before all accesses
that require it actually took place. This in turn causes an additional cache miss, once
the original cache line is accessed again. Of course, such additional cache misses only
occur, once the cache capacity is exceeded, i.e., after min

{
#i , |Ci |R

}
spots have been

accessed. The probability that a cache line is removed from the cache although it will
be used for another access increases with the size ofR. In the worst case, each access
causes an additional cache miss. Hence, we get

M ri (r trav(R,u))

= |R|Zi +
(
|R| −min

{
#i , |Ci |R

})
·

(
1−min

{
1,

Ci

||R||

})
. (4.5)

CaseR− u ≥ Z. Each spot is touched exactly once, and as adjacent accesses
cannot benefit from previously loaded cache lines, we get the same formula as for
sequential access:

M ri (r trav(R,u)) = |R| ·

(⌈
u
Zi

⌉
+

(u− 1) modZi

Zi

)
. (4.6)

84 4 Generic Database Cost Models

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16 32 64 128 256

L1
 m

is
se

s
(in

 m
ill

io
n)

bytes accessed per data item (u)

equation (4.5) (r_trav)
equation (4.3) (s_trav)
equation (4.4/4.6) (s_trav/r_trav)
align=-1 (s_trav)
average (s_trav)
average (r_trav)
align=0 (s_trav)

a)M1(s trav(R,u)), M1(r trav(R,u))

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 4 8 16 32 64 128 256

L2
 m

is
se

s
(in

 m
ill

io
n)

bytes accessed per data item (u)

equation (4.5) (r_trav)
equation (4.3) (s_trav)
equation (4.4/4.6) (s_trav/r_trav)
align=-1 (s_trav)
average (s_trav)
average (r_trav)
align=0 (s_trav)

b) M2(s trav(R,u)), M2(r trav(R,u))

Figure 4.6: Impact ofu and its Alignment on the Number of Cache Misses
(|R| = 1,000,000, R= 320 B, Z1 = 32 B, Z2 = 128 B)

4.4 Deriving Cost Functions 85

4.4.4 Discussion

Comparing the final formulas for sequential and random traversals, we can derive the
following relationships and invariants. Figure 4.7 visualizes some of the effects. The
points represent the measured cache misses, while the lines represent the estimations
of our formulas.

R− u < Zi ∧ ||R|| ≤ Ci
(4.3,4.5)
⇒ M x

i (s travx(R,u)) = M ri (r trav(R,u));

R− u < Zi ∧ ||R|| > Ci
(4.3,4.5)
⇒ M x

i (s travx(R,u)) < M ri (r trav(R,u)).

With untouched gaps smaller than cache lines, random traversals cause as many misses
as sequential traversals as long asRfits in the cache, but more, ifRexceeds the cache
(cf., Figure 4.7a vs. 4.7c & 4.7b vs. 4.7d).

R− u ≥ Zi
(4.4,4.6)
⇒ M x

i (s travx(R,u)) = M ri (r trav(R,u)).

With untouched gaps larger than cache lines, random traversals cause as many misses
as sequential traversals.

R− u < Zi
(4.3)
⇒ M x

i (s travx(R,u)) = M x
i (s travx(R′,u′))

∀R′,u′ with ||R′|| = ||R|| ∧ R′ − u′ < Zi .

With untouched gaps smaller than cache lines, sequential traversals depend only on
the size ofR, but are invariant to varying item size (and hence number of items) and
bytes touched per item (cf., Figure 4.7a & 4.7b).

R− u < Zi ∧ ||R|| ≤ Ci
(4.5)
⇒ M ri (r trav(R,u)) = M ri (r trav(R′,u′))

∀R′,u′ with ||R′|| = ||R|| ∧ R′ − u′ < Zi ;

R− u < Zi ∧ ||R|| > Ci
(4.5)
⇒ M ri (r trav(R,u)) = M ri (r trav(R,u′))

∀u′ with R− u′ < Zi .

For random traversals, the invariance to item size holds only ifR entirely fits in the
cache (cf., Figure 4.7c & 4.7d).

R− u ≥ Zi
(4.4/4.6)
⇒ ~M i(T(R,u)) = ~M i(T(R′,u))

∀R′ with |R′| = |R| ∧ R′ − u ≥ Zi ,

T ∈ {s travx, r trav}.

With untouched gaps larger than cache lines, the number of misses of all traversals
depend only on the number of items accessed and the number of bytes touched per
item.

86 4 Generic Database Cost Models

L1 misses L2 misses

1e+02

1e+03

1e+04

1e+05

 1 2 4 8 16 32 64 128 256
item size (R.w) [bytes]

||R||=64kB
||R||=40kB
||R||=32kB
||R||=24kB
||R||=16kB

a)M1(s trav(R,u))

1e+04

1e+05

1e+06

1e+07

 1 2 4 8 16 32 64 128 256
item size (R.w) [bytes]

||R||=16MB
||R||=12MB
||R||= 8MB
||R||= 6MB
||R||= 2MB

b) M2(s trav(R,u))

1e+02

1e+03

1e+04

1e+05

 1 2 4 8 16 32 64 128 256
item size (R.w) [bytes]

||R||=64kB
||R||=40kB
||R||=32kB
||R||=24kB
||R||=16kB

c) M1(r trav(R,u))

1e+04

1e+05

1e+06

1e+07

 1 2 4 8 16 32 64 128 256
item size (R.w) [bytes]

||R||=16MB
||R||=12MB
||R||= 8MB
||R||= 6MB
||R||= 2MB

d) M2(r trav(R,u))

Figure 4.7: Impact of||R|| andRon the Number of Cache Misses
(u = R, C1 = 32 kB, Z1 = 32 B, C2 = 8 MB, Z2 = 128 B)

4.4 Deriving Cost Functions 87

4.4.5 Repetitive Traversals

With repetitive traversals, cache re-usage comes into play. We assume initially empty
caches.6 Hence, the first traversal requires as many cache misses as estimated above.
But the subsequent traversals may benefit from the data already present in the cache
after the first access. We will analyze this in detail for both sequential and random
traversals.

4.4.5.1 Repetitive Sequential Traversal

BeRa data region,P = rs travx(r,d,R,u) a repetitive sequential traversal overR, and
P′ = s travx(R,u) a single sequential traversal overR. Two parameters determine the
caching behavior of a repetitive sequential traversal: the numberM x(P′) of cache lines
touched during the first traversal and the directiond in which subsequent traversals
sweep overR.

In caseM x(P′) is smaller than the total number of available cache lines, only the
first traversal causes cache misses, loading all required data. Allr − 1 subsequent
traversals then just access the cache, causing no further cache misses.

In caseM x(P′) exceeds the number of available cache lines, the end of a traversal
pushes the data read at the begin of the traversal out of the cache. If the next traver-
sal then again starts at the begin ofR, it cannot benefit from any data in the cache.
Hence, withd = uni, each sweep causes the full amount of cache misses. Only if
a subsequent sweep starts where the previous one stopped, i.e., it traversesR in the
opposite direction as its predecessor, it can benefit from the data stored in the cache.
Thus, withd = bi, only the first sweep causes the full amount of cache misses. The
r − 1 remaining sweeps cause cache misses only for the fraction ofR that does not fit
into the cache.

In total, we get

M x
i (rs travx(r,d,R,u))

=


M x

i (P′), if M x
i (P′) ≤ #i

r ·M x
i (P′), if M x

i (P′) > #i ∧ d = uni

M x
i (P′) + (r − 1) · (M x

i (P′) − #i), if M x
i (P′) > #i ∧ d = bi.

(4.7)

4.4.5.2 Repetitive Random Traversal

Be R a data region,P = rr trav(r,R,u) a repetitive random traversal overR, and
P′ = r trav(R,u) a single random traversal overR. With random memory access,d
is not defined, hence, we need to consider onlyM r(P′) to determine to which extend
repetitive accesses can benefit from cached data.

WhenM r(P′) is smaller than the number of available cache lines, we get the same
effect as above. Only the first sweep causes cache misses, loading all required data.
All r−1 subsequent sweeps then just access the cache, causing no further cache misses.

6Section 4.5 will discuss how to consider pre-loaded caches.

88 4 Generic Database Cost Models

In caseM r(P′) exceeds the number of available cache lines, the most recently
accessed data remains in the cache at the end of a sweep. Hence, there is a certain
probability that the first accesses of the following sweep might re-use (some of) these
cache lines. This probability decreases asM r(P′) increases. We estimate the prob-
ability with #/M r(P′).

Analogously to the sequential case, we get

M ri (rr trav(r,R,u))

=


M ri (P′), if M ri (P′) ≤ #i

M ri (P′) + (r − 1)·

(
M ri (P′) −

#i

M ri (P′)
· #i

)
, if M ri (P′) > #i .

(4.8)

4.4.6 Random Access

Be R a data region andP = r acc(r,R,u) a random access pattern onR. As in Sec-
tion 4.4.3, we have

M si (r acc(r,R,u)) = 0.

In contrary to a single random traversal, where each data item ofR is touched exactly
once, we do not know exactly, how many distinct data items are actually touched with
random access. However, knowing that there arer independent random accesses to
the |R| data items inR, we can estimate the average/expected numberI of distinct data
items that are indeed touched. BeE the number of all different outcomes of pickingr
times one of the|R| data items allowing multiple accesses to each data item. Further be
E j the number of outcomes containing exactly 1≤ j ≤ min{r, |R|} distinct data items.
If we respect ordering, all outcomes are equally likely to occur, hence, we have

I (r acc(r,R,u)) =

min{r,|R|}∑
j=1

E j(r, |R|) · j

E(r, |R|)

with
min{r,|R|}∑

j=1

E j(r, |R|) = E(r, |R|).

CalculatingE is straight forward:

E(r, |R|) = |R|r .

CalculatingE j turns out to be a bit more difficult. Be(
x
y

)
=

x!
(x− y)! · y!

the binomial coefficient, i.e., the number of ways of pickingy unordered outcomes
from x possibilities. Further be{

x
y

}
=

1
y!
·

y−1∑
j=0

(−1) j ·

(
y
j

)
· (y− j)x

4.4 Deriving Cost Functions 89

theStirling number of second kind, i.e., the number of ways of partitioning a set ofx
elements intoy nonempty sets [Sti30]. Then, we have

E j(r, |R|) =

(
|R|
j

)
·

{
r
j

}
· j!.

First of all, there are
(
|R|
j

)
ways to choosej distinct data items from the available|R|

data items. Then, there are
{
r
j

}
ways to partition ther accesses intoj groups, one for

each distinct data item. Finally, we have to consider allj! permutations to get equally
likely outcomes.

Knowing the numberI of distinct data items that are touched byr acc(r,R,u) on
average, we can now calculate the numberC of distinct cache lines touched. Again,
we distinguish two cases, depending on the size of the (minimal) untouched gaps
between two adjacent accesses.

CaseR − u ≥ Z. With the (minimal) untouched gaps larger than cache line
size, no cache line is used by more than one data item. Following the discussion in
Section 4.4.2, we get

Ci(r acc(r,R,u)) = I (r acc(r,R,u)) ·

(⌈
u
Zi

⌉
+

(u− 1) modZi

Zi

)
.

CaseR−u ≥ Z. With the (minimal) untouched gaps smaller than cache line size,
(some) cache lines might be used by more than one data item. In case allI touched
data items are pair-wise adjacent, we get

Či(r acc(r,R,u)) =

 I (r acc(r,R,u)) · R

Zi

 .
However, if I � |R|, the actual untouched gap might still be larger than cache line
size, hence

Ĉi(r acc(r,R,u))

= min

{
I (r acc(r,R,u)) ·

(⌈
u
Zi

⌉
+

(u− 1) modZi

Zi

)
, |R|Zi

}
.

Č is more likely with largeI , while Ĉ is more likely with smallI . Hence, we calculate
the averageC as a linear combination of̌C andĈ:

Ci(r acc(r,R,u)) =
I (r acc(r,R,u))

|R|
·Či(r acc(r,R,u))

+

(
1−

I (r acc(r,R,u))
|R|

)
·Ĉi(r acc(r,R,u)).

90 4 Generic Database Cost Models

Knowing the numberC of distinct cache lines touched, we can finally calculate
the number of cache misses. Withr accesses spread overI distinct data items, each
item is touchedr/I times on average. Analogously to Equation (4.8), we get (P =

r acc(r,R,u))

M ri (r acc(r,R,u))

=


Ci(P), if Ci(P) ≤ #i

Ci(P) +

(
r

I (P)
− 1

)
·

(
Ci(P) −

#i

Ci(P)
· #i

)
, if Ci(P) > #i .

(4.9)

4.4.7 Interleaved Multi-Cursor Access

BeR= {Rj}|
m
j=1 a data region divided intom≤ |R| sub-regionsRj with

Rj = R and k = |Rj | =
|R|
m
. (∗)

Further beP = nest(R,m,T([r,]Rj ,u),O,D) with T ∈ {s travx, r trav, r acc} an inter-
leaved multi-cursor access. We inspect local random access (T ∈ {r acc, r trav}) and
local sequential access (T = s travx) separately.

4.4.7.1 Local Random Access

With T ∈ {r acc, r trav}, P behaves like a single traversalP′ = T′([m · r,]R,u). For
k = 1 (i.e., m = |R|), the new order is the original global order, otherwise, it is the
original local order, i.e., we get

T′ =

s travx, if k = 1 ∧ O = seq

T, else

and consequently

~M i(nest(R,m,T([r,]Rj ,u),O,D)) = ~M i(T
′([m · r,]R,u)).

4.4.7.2 Local Sequential Access

For T = s travx, we distinguish three cases:

• R− u > Z,

• R− u ≤ Z ∧ m ·
⌈

u
Z

⌉
≤ #,

• R− u ≤ Z ∧ m ·
⌈

u
Z

⌉
> #.

4.4 Deriving Cost Functions 91

CaseR− u > Z. In this case,P meansk = |Rj | times traversing across allRj in
orderO. Hence, each traversal performsm accesses (one to eachRj). The distance
between adjacent accesses within each traversal is||Rj || = k · R. We describe these
traversals byT′(R′,u) whereR′ is a data region with

|R′| = m and R′ = ||Rj ||, (†)

and

T′ =

r trav, if O = ran

T, else.

As the non-touched gap between adjacent accesses within eachRj is larger than a
cache line (R− u > Z), no cache line is shared by two or more accesses. Thus, the
total number of cache misses is the sum of the cache misses caused by thek traversals:

~M i(nest(R,m,T(Rj ,u),O,D))

=
k∑

h=1

~M i(T′(R′,u))

= k · ~M i(T′(R′,u))

(4.4/4.6)
=


〈

k · |R′| ·

(⌈
u
Zi

⌉
+

(u− 1) modZi

Zi

)
,0

〉
, if T′ = s travs〈

0, k · |R′| ·

(⌈
u
Zi

⌉
+

(u− 1) modZi

Zi

) 〉
, else

(4.4/4.6,∗,†)
= ~M i(T′(R,u)).

CaseR−u ≤ Z ∧ m·
⌈

u
Z

⌉
≤ #. With the non-touched gaps being smaller than

cache line size (R−u ≤ Z), adjacent accesses within eachRj might shared a cache line,
and hence benefit from previous accesses. With one traversal across allRj touching
less cache lines than there are in total (m ·

⌈
u
Z

⌉
≤ #), the subsequent traversal does not

have to reload the shared cache lines. Hence, the total number of cache misses is just
the sum of all local patterns. Though these are sequential, a global random pattern
will avoid sequential latency. We take this into account when definingT′ and get

~M i(nest(R,m,T(Rj ,u),O,D))

=
m∑
j=1

~M i(T′(Rj ,u))

= m · ~M i(T′(Rj ,u))

(4.3,∗)
= ~M i(T′(R,u))

92 4 Generic Database Cost Models

with

T′ =

s travr, if O = ran

T, else.

CaseR− u ≤ Z ∧ m ·
⌈

u
Z

⌉
> #. With one traversal across allRj touching

more cache lines than there are in total (m ·
⌈

u
Z

⌉
> #), only h = #/

⌈
u
Z

⌉
< m of them

shared cache lines remain in the cache for potential re-use. The numberh′ of cache
lines that is actually re-used depends onO andD and is calculated similarly as for the
repetitive traversals in Section 4.4.5:

h′i =


0, if O = seq ∧ D = uni

hi , if O = seq ∧ D = bi
hi

m
· hi , if O = ran

hi = #i/
⌈

u
Zi

⌉
.

Hence, the total number of cache misses is the same as in the previous case, plus the
m− h′ cache lines that have to be reloaded during all but the first traversal. These
additional misses cause random latency, i.e., we get

~M i(nest(R,m,T(Rj ,u),O,D)) = ~M i(T
′(R,u)) + ~X i

with
~X i =

〈
0, (k− 1) · (m− h′i)

〉
(‡)

andT′ as before.

4.4.7.3 Summary

Gathering the results from all the different cases discussed above, we get

~M i(nest(R,m,T([r,]Rj ,u),O,D))

=


~M i(T′([m · r,]R,u)) + ~X i ,

if T = s travx

∧ R− u < Zi

∧ m ·
⌈

u
Zi

⌉
> #i

~M i(T′([m · r,]R,u)), else

(4.10)

with ~X i as in (‡) and

T′ =


s travx, if T ∈ {r acc, r trav} ∧ O = seq ∧ k = 1

r trav, if T = s travx ∧ O = ran ∧ R− u > Zi

s travr, if T = s travs ∧ O = ran ∧ R− u ≤ Zi

T, else.

4.5 Combining Cost Functions 93

In other words, an interleaved multi-cursor access pattern causes at least as many
cache misses as some simple traversal pattern on the same data region. However, it
might cause random misses though the local pattern is expected to cause sequential
misses. Further, if the cross-traversal requires more cache lines than available,Xr =
(k− 1) · (m− h′i) additional random misses will occur.

4.5 Combining Cost Functions

Given the cache misses for basic patterns, we will now discuss how to derive the
resulting cache misses of compound patterns. The major problem is to model cache
interference that occurs among the basic patterns.

4.5.1 Sequential Execution

BeP1, . . . ,Pp ∈ P (p > 1) access patterns.⊕(P1, . . . ,Pp) then denotes thatPq+1 is
executed afterPq is finished (cf., Sec. 4.3.3). Obviously, the patterns do not interfere
in this case. Consequently, the resulting total number of cache misses is at most the
sum of the cache misses of allp patterns. However, if two subsequent patterns operate
on the same data region, the second might benefit from the data that the first one leaves
in the cache. It depends on the cache size, the data sizes, and the characteristics of the
individual patterns, how many cache misses may be saved this way.

To model this effect, we need to consider the contents orstateof the caches. We
describe the state of a cache as a setS of pairs 〈R, ρ〉 ∈ D×]0,1], stating for each
data regionR the fractionρ that is available in the cache. For convenience, we omit
data regions that are not cached at all, i.e., those withρ = 0. In order to appropriately
consider the caches’ initial states when calculating the cache misses of a basic pattern
P = T([..,]R[, ..]) ∈ Pb, we define

~M i(Si ,P)

=


〈0,0〉 , if 〈R,1〉 ∈ Si

~M i(P) −

〈
0,
ρ · |R|Zi

~M i(P)
· ρ · |R|Zi

〉
,

if T ∈ {r trav, rr trav, r acc}

∧ ∃ρ ∈]0,1[: 〈R, ρ〉 ∈ Si

~M i(P) else

(4.11)

with ~M i(P) as defined in Equations (4.3) through (4.10). In caseR is already entirely
available in the cache, no cache misses will occur duringP. In case only a fraction
of R is available in the cache, there is a certain chance, that random patterns might
(partially) benefit from this fraction. Sequential patterns, however, would only benefit
if this fraction makes up the ”head”ofR. As we do not know whether this is true, we
assume that sequential patterns can only benefit, ifR is already entirely in the cache.
For convenience, we write

~M i(∅,P) = ~M i(P) ∀P ∈ P.

94 4 Generic Database Cost Models

Additionally, we need to know the caches’ resulting statesS(P) after a patternP
has been performed. For basic patternsP = T([..,]R[, ..]) ∈ Pb, we define

Si(P) =

{〈
R,min

{
Ci

||R||
,1

}〉 }
.

For compound patterns⊕(P1, . . . ,Pp) with P1, . . . ,Pp ∈ P, p > 1, we define

Si(⊕(P1, . . . ,Pp)) = Si(Pp).

Here, we assume that only that last data region (partially) remains in the cache. In case
thatR is smaller that the cache, (parts) of the previous data regions might also remain
in the cache. However, we ignore this case here, and leave it for future research.

Equipped with these tools, we can finally calculate the number of cache misses
that occur when executing patternsP1, . . . ,Pp ∈ P, p > 1 sequentially, given an initial
cache stateS0:

~M i(S0
i ,⊕(P1, . . . ,Pp)) = ~M i(S0

i ,P1) +
p∑

q=2

~M i(Si(Pq−1),Pq). (4.12)

4.5.2 Concurrent Execution

When executing two or more patterns concurrently, we actually have to consider the
fact that they are competing for the same cache. The number of total cache misses
will be higher than just the sum of the individual cache miss rates. The reason for this
is, that the patterns will mutually evict cache lines from the cache due to alignment
conflicts. To which extend such conflict misses occur does not only depend on the
patterns themselves, but also on the data placement and details of the cache alignment.
Unfortunately, these parameters are not know during cost evaluation.

Hence, we model the impact of the cache interference between concurrent patterns
by dividing the cache among all patterns. Each individual pattern gets only a fraction
of the cache according to itsfootprint size. We define a pattern’s footprint sizeF as
the number of cache lines that it potentially revisits.

With single sequential traversals, a cache line is never visited again once access has
moved on to the next cache line. Hence, simple sequential patterns virtually occupy
only one cache line a at time. Or in other words, the number of cache misses is
independent of the available cache size. The same holds for single random traversals
with R− u ≥ Z. In all other cases, basic access patterns (potentially) revisit all cache
lines covered by their respective data region. We defineF as follows.

BeP = T([..,]R,u) ∈ Pb a basic access pattern, then

Fi(P) =


1, if T = s travx

1, if T = r trav ∧ R− u ≥ Zi

|R|Zi , else.

4.6 CPU Costs 95

BeP1, . . . ,Pp ∈ P (p > 1) access patterns, then

Fi(⊕(P1, . . . ,Pp)) = max{Fi(P1), . . . ,Fi(Pp)},

Fi(�(P1, . . . ,Pp)) =
p∑

q=1

Fi(Pq).

Further, we use~M i/ν with ν ≥ 1 to denote the number of misses with only1
ν
th of

the total cache size available. To calculate~M i/ν, we simply replaceC and # byC
ν

and
#
ν
, respectively, in the formulas in Sections 4.4 and 4.5.1. Likewise, we defineSi/ν(P).

We write ~M i = ~M i/1 andSi = Si/1.
With these tools at hand, we calculate the cache misses for concurrent execution

of patternsP1, . . . ,Pp ∈ P (p > 1) given an initial cache stateS0 as

~M i/ν(S0
i ,�(P1, . . . ,Pp)) =

p∑
q=1

~M i/νq(S
0
i ,Pq) (4.13)

with

νq =
F(�(P1, . . . ,Pp))

F(Pq)
· ν.

After executing�(P1, . . . ,Pp), the cache contains a fraction of each data region
involved, proportional to its footprint size:

Si(�(P1, . . . ,Pp)) =
p⋃

q=1

Si/νq(Pq)

with νq as defined before.

4.5.3 Query Execution Plans

With the techniques discussed in the previous sections, we have the basic tools at hand
to also estimate the number and kind of cache misses of complete query plans, and
hence to predict their memory access costs. The various operators in a query plan
are combined in the same way the basic patterns are combined to form compound
patterns. Basically, the query plan describes, which operators are executed one after
the other and which are executed concurrently. Here, we view pipelining as concurrent
execution of data-dependent operators. Hence, we can derive the complex memory
access pattern of a query plan by combining the compound patterns of the operators
as discussed above. Considering the caches’ states as introduced before takes care of
properly recognizing data dependencies.

4.6 CPU Costs

Next to memory access costs, we need to know the pure CPU processing costs in order
to estimate the total execution costs. We now present a simple but effective method to

96 4 Generic Database Cost Models

acquire CPU costs using a calibration approach. As we focus on memory access costs
in this work, a more detailed model of CPU costs is beyond the scope of this thesis
and left for future work.

4.6.1 What to calibrate?

Calibrating CPU costs means to actually measure the costs — i.e., execution time —
of all algorithms in a laboratory setting. A prerequisite for this approach is that we
know the complexity of the algorithms in terms of input and output cardinalities. In
other words, we assume we know the principle CPU cost functions of our algorithms.
For instance, we know that the CPU cost of a scan-select can be described as

TCPU = c0 + c1 · n+ c2 ·m

wherec0 represents the fix startup costs,n andm are the input and output cardinality,
respectively, andc1, c2 represent the per tuple costs for processing input tuples and
producing output tuples, respectively. As we are talking about our own algorithms,
the assumption that we know such functions is reasonable. In case of doubt, we can
use theSoftware Testpilot[KK93, AKK95] to experimentally derive these functions.

Obviously, these functions only depend on the algorithm itself. All implemen-
tations details like coding style, code optimizations, and compiler optimizations are
covered by the constantsci in the above formula. This approach implies that the con-
stantsci are indeed independent of the data volume. But this does hold for the pure
CPU costs. The impact of data volume is already covered by the memory access costs.
However, theci are typically not independent of other parameters like data types, and
respective code optimizations in the algorithms. Here, again, our code expansion
technique pays back. Within each expanded implementation variant of our algorithm,
these parameters are constant, and thus, theci are indeed simple constants for each
physical implementation.

4.6.2 How to calibrate?

Hence, calibrating theci can be done by some simple experiments. For instance, in
our example case, the scan-select, we use the following experiments:

First, we need to measure the fix (start-up) costsc0. The start-up costs cover all
the ”administrative”work that is done only once per algorithm. Such work contains
among other

• parsing the MIL command;

• performing on-the-fly tactical/operational optimization, i.e., choosing the most
adequate algorithm/implementation according to the current properties of the
inputs and the current state of the system;

• overhead for calling the function that implements the operator, including pos-
sible instruction cache misses (i.e., memory access) to load the respective code
and the necessary stack management;

4.6 CPU Costs 97

• creating, initializing, and removing temporary data structures;

• creating the output/result data structure, usually a BAT.

We measurec0 by measuring the time needed to execute the operation on empty
inputs. Typically, the time needed for this task is so small, that the resolution of the
timing function is just not small enough to ensure accurate and reliable measurements.
We prevent such problems by repeating the empty call several times and measure the
total time. The actual costs for a single call are then calculated by dividing the total
time by the number of calls.

Once we knowc0, we can measurec1 by performing the operation in question
on a non-empty input that produces no output. In case of our example (select), for
instance, this can be achieved by using a predicate the does not match any tuple of
the input BAT.c1 is then to be calculated by subtractingc0 from the measured time
and dividing the remainder by the cardinality of the input. Two things have to be
considered. On the one hand, we would like to exclude any interference with memory
access. One way to do this is to use an input table that is so small that all processing
takes place in L1 cache. This requires an initial not-measured run to pre-load the
cache. Again, we might need to measure several subsequent runs to ensure stable
results. On the other hand, using too little input data might result in inaccurate times
for the per tuple costs. The fix costs are likely to be dominant, as we might need to
use really small inputs to be sure that all processing indeed is limited to L1. Using
large inputs, however, implies that memory costs will be included in the measurement.
But we do know the memory costs, and hence, we can easily subtract them from the
measured times to get the pure CPU costs. We propose to use the second technique.

Actually, the second technique has another advantage. As we learned in Chapter 3,
CPU costs and memory access costs may overlap. Hence, simply adding-up the CPU
costs as calibrated without any memory access by the first technique and the memory
costs as estimated by our models would result in too high overall costs. Accurately
predicting the degree of overlap between CPU costs and memory access costs, how-
ever, depends on various parameters and is hence very difficult, if not impossible. Our
second technique, however, implicitly considers the actual overlap by measuring only
that part of the CPU costs that does not overlap with memory access costs. As we are
interested in the CPU costs only to add them to the estimated memory access costs,
and thus yield the total costs, the second technique makes-up a feasible solution.

Knowing bothc0 andc1, we can measurec2 in a third and final experiment. We
modify the second experiment to produce output that is as big as the input. In case of
our example (select), for instance, this can be achieved by using a predicate such that
all input tuples do match. Subtracting fix costs, input processing costs (as measured
before), and memory access costs from the measured time, we can calculate the output
creation costs.

For other algorithms, the calibration procedure follows the same schema, though
it gets more complex for more complex algorithms.

98 4 Generic Database Cost Models

4.6.3 When to calibrate?

For the memory access cost models, we proposed to measure the required hardware
parameters once when the DBMS is installed on a new (hardware-)system. Likewise,
the CPU costs also need to be measured only once per system. However, as we need
to measure the costs for each physical implementation of each algorithm, this might
be a rather complex and long running task. One way to speed-up the installation
process is to restrict this task (at installation time) to the most popular MIL operations
and only their most important variants. The remaining costs can then be calibrated
”on-the-fly”only as soon as they are need by the system.

4.7 Experimental Validation

To validate our cost model, we compare the estimated costs with experimental results.
We focus on characteristic operations, here. The data access pattern of each operation
is a combination of several basic patterns. The operations are chosen so that each
basic pattern occurs at least once. Extension to further operations and whole queries,
however, is straight forward, as it just means applying the same techniques to combine
access patterns and derive their cost functions.7

4.7.1 Setup

We implemented our cost functions and used our main-memory DBMS prototype
Monet (see Section 2.7) as experimentation platform. We ran our experiments
on an SGI Origin2000 and on an AMD PC. Table 4.2 lists the relevant hardware
features of the machines. The cache characteristics are measured with our calibration
tool. We use the CPU’s hardware counters to get the exact number of cache and TLB
misses while running our experiments. Thus, we can validate the estimated cache
miss rates. Validating the resulting total memory access cost (i.e., miss rates scored
by their latencies) is more complicated, as there is no way to measure the time spent
on memory access. We can only measure the total elapsed time, and this includes the
(pure) CPU costs as well. Hence, we extend our model to estimate the total execution
timeT as sum of memory access time and pure CPU time

T = TMem + TCPU (4.14)

with TMem as in Equation (4.1). We calibrateTCPU for each algorithm as described in
the previous section.

4.7.2 Results

Figures 4.8 through 4.11 gather our experimental results. Each plot represents one
algorithm. The cache misses and times measured during execution are depicted as
points. The respective cost estimations are plotted as lines. Cache misses are depicted

7We present more examples and validation in Chapter 5.

4.7 Experimental Validation 99

machine type SGI Origin2000 AMD PC

OS IRIX64 6.5 Linux 2.2.14

CPU MIPS R10000 AMD Athlon

CPU speed 250 MHz 600 MHz

main-memory size 48 GB (4 GB local) 384 MB

cache & TLB levels N 3 3

L1 cache capacity C1 32 KB 64 KB

L1 cache line size Z1 32 bytes 64 bytes

L1 cache lines #1 1,024 1,024

L2 cache capacity C2 4 MB 512 KB

L2 cache line size Z2 128 bytes 64 bytes

L2 lines #2 32,768 8,192

TLB entries #3 64 32

page size Z3 16 KB 4 KB

TLB capacity (#3 · Z3) C3 1 MB 128 KB

TLB miss latency lr3 = ls3 228 ns = 57 cycles 8 ns = 5 cycles

sequential access

L1 miss latency ls1 10 ns = 2.5 cycles 20 ns = 12 cycles

L2 miss latency ls2 180 ns = 45 cycles 71 ns = 43 cycles

L1 miss bandwidth bs1 3052 MB/s 3052 MB/s

L2 miss bandwidth bs2 555 MB/s 670 MB/s

random access

L1 miss latency lr1 24 ns = 6 cycles 45 ns = 27 cycles

L2 miss latency lr2 406 ns = 101 cycles 180 ns = 108 cycles

L1 miss bandwidth br1 1272 MB/s 1356 MB/s

L2 miss bandwidth br2 243 MB/s 271 MB/s

Table 4.2: Hardware Characteristics

in absolute numbers. Times are depicted in milliseconds. We will now discuss each
algorithm in detail.

Quick-Sort Our first experiment is sorting. We use quick-sort to sort a table in-
place. Quick-sort uses two cursors, one starting at the front and the other starting at
the end. Both cursors sequentially walk toward each other swapping data items where
necessary, until they meet in the middle. We model this as two concurrent sequential
traversals, each sweeping over one half of the table:s travs(U/2)� s travs(U/2). At
the meeting point, the table is split in two parts and quick-sort recursively proceeds
depth-first on each part. Withn being the table’s cardinality, the depth of the recursion

100 4 Generic Database Cost Models

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

128kB 512kB 2MB 8MB 32MB 128MB

||U||=C2

relation sizes (||U||)

L1 misses
L2 misses

TLB misses
time [ms]

a) Origin2000

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

128kB 512kB 2MB 8MB 32MB 128MB

||U||=C2

relation sizes (||U||)

L1 misses
L2 misses

TLB misses
time [ms]

b) AMD PC

Figure 4.8: Measured (points) and Predicted (lines) Cache Misses and Execution Time
of Quick-Sort

is log2 n. In total, we model the data access pattern of quick-sort as

U ← quick sort(U) :

⊕ |
log2U.n
i=1

(
⊕|

log2U.n
j=i

(
s travs(U/2 j) � s travs(U/2 j)

))
.

We varied the table sizes from 128 KB to 128 MB and the tables contained ran-
domly distributed (numerical) data. Figure 4.8 shows that the models accurately pre-
dict the actual behavior. Only the start-up overhead of about 100 TLB misses is not
covered, but this is negligible. The step in the L2 misses-curve depicts the effect of
caching on repeated sequential access: Tables that fit into the cache have to be loaded
only once during the top-level iteration of quick-sort. Subsequent iterations operate
on the cached data, causing no additional cache misses.

Merge-Join Our next candidate is merge-join. Assuming both operands are already
sorted, merge-join simply performs three concurrent sequential patterns, one on each
input and one on the output:

W← mergejoin(U,V) : s travs(U) � s travs(V) � s travs(W).

Again, we use randomly distributed data and table sizes as before. In all exper-
iments, both operands are of equal size, and the join is a 1:1-match. The respective

4.7 Experimental Validation 101

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

128kB 512kB 2MB 8MB 32MB 128MB

relation sizes (||U||=||V||=||W||)

L1 misses
L2 misses

TLB misses
time [ms]

a) Origin2000

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

128kB 512kB 2MB 8MB 32MB 128MB

relation sizes (||U||=||V||=||W||)

L1 misses
L2 misses

TLB misses
time [ms]

b) AMD PC

Figure 4.9: Measured (points) and Predicted (lines) Cache Misses and Execution Time
of Merge-Join

results in Figure 4.9 demonstrate the accuracy of our cost functions. Further, we see
that single sequential access is not affected by cache sizes. The costs are proportional
to the data sizes.

Hash-Join While the previous operations perform only sequential patterns, we now
turn our attention to hash-join. Hash-join performs random access to the hash-table,
both while building it and while probing the other input against it. We model the data
access pattern of hash-join as

W← hashjoin(U,V) :

s travs(V) � r trav(V′) ⊕ s travs(U) � r acc(|U |,V′) � s travs(W).

The plots in Figure 4.10 clearly show the significant increase in L2 and TLB
misses, once the hash-table size||V′|| exceeds the respective cache size.8 Our cost
model correctly predicts these effects and the resulting execution time.

Partitioning One way to prevent the performance decrease of hash-join on large
tables is to partition both operands on the join attribute and then hash-join the matching
partitions [SKN94, MBK00a]. If each partition fits into the cache, no additional cache
misses will occur during hash-join.

8The plots show no such effect for L1 misses, as all hash-tables are larger than the L1 cache, here.

102 4 Generic Database Cost Models

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

128kB 512kB 2MB 8MB 32MB 128MB

||V’||=C3 ||V’||=C2

relation sizes (||U||=||V||=||W||)

L1 misses
L2 misses

TLB misses
time [ms]

Figure 4.10: Measured (points) and Predicted (lines) Cache Misses and Execution
Time of Hash-Join

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

2 32 1k 32k 1M 32M

m=#3 m=#1 m=#2

number of partitions (m)

L1 misses
L2 misses

TLB misses
time [ms]

a) Partitioning
(||U || = ||W|| = 512 MB)

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

512MB32MB 1MB 32kB 1kB 32B

||V’j||=C2 ||V’j||=C3 ||V’j||=C1

partition size (||V’j||)

L1 misses
L2 misses

TLB misses
time [ms]

b) Partitioned Hash-Join
(||U || = ||V|| = ||W|| = 512 MB)

Figure 4.11: Measured (points) and Predicted (lines) Cache Misses and Execution
Time of Partitioning and Partitioned Hash-Join

4.8 Conclusion 103

Partitioning algorithms typically maintain a separate output buffer for each result
partition. The input is read sequentially, and each tuple is written to its output par-
tition. Data access within each output partition is also sequential. Hence, we model
partitioning using a sequential traversal for the input and an interleaved multi-cursor
access for the output:

{U j}|
m
j=1← cluster(U,m) :

s travs(U) � nest({U j}|
m
j=1,m, s travs(U j), ran).

The curves in Figure 4.11a demonstrate the effect we discussed in Section 4.4.7:
The number of cache misses increases significantly, once the number of output buffers
mexceeds the number of available cache blocks #. Though they tend to under estimate
the costs for very high numbers of partitions, our models accurately predict the crucial
points.

Partitioned Hash-Join Once the inputs are partitioned, we can join them by per-
forming a hash-join on each pair of matching partitions. We model the data access
pattern of partitioned hash-join as

{Wj}|
m
j=1← part hashjoin({U j}|

m
j=1, {V j}|

m
j=1,m) :

⊕ |mj=1(hash join(V j ,U j ,Wj)).

Figure 4.11b shows that the cache miss rates, and thus the total costs, decrease
significantly, once each partition (respectively its hash-table) fits into the cache.

4.8 Conclusion

We presented a new generic approach to build generic database cost models for hier-
archical memory systems.

We extended the knowledge base on analytical cost-models for query optimiza-
tion with a strategy derived from our experimentation with main-memory database
technology. The approach taken shows that we can achieve hardware-independence
by modeling hierarchical memory systems as multiple level of caches. Each level
is characterized by a few parameters describing its sizes and timings. This abstract
hardware model is not restricted to main-memory caches. As we pointed out, the
characteristics of main-memory access are very similar to those of disk access. View-
ing main-memory (e.g., a database system’s buffer pool) as cache for disk access, it
is obvious that our approach also covers I/O. As such, the model presented provides a
valuable addition to the core of cost-models for disk-resident databases as well.

Adaptation of the model to a specific hardware is done by instantiating the param-
eters with the respective values of the very hardware. OurCalibrator, a software tool
to measure these values on arbitrary systems, is available for download from our web
sitehttp://monetdb.cwi.nl.

104 4 Generic Database Cost Models

We identified a few key access patterns eminent in the majority of relational alge-
bra implementations. The key patterns fulfill two major requirements: they are simple
and they have a relevant impact on data access costs. For these basic patterns, we
developed cost functions that estimate the respective access cost in terms of cache
misses scored by there latency. To maintain hardware-independence, the functions are
parameterized with the hardware characteristics.

We introduced two operators to combine simple patterns to more complex patterns
and developed rules how to generate the respective cost functions.

With our approach, building physical costs function for database operations boils
down to describing the algorithms’ data access in a kind of ”pattern language”as pre-
sented in Section 4.3.3. This task requires only information that can be derived from
the algorithm. Especially, no knowledge about the hardware is needed, here. The
detailed cost function are than automatically derived from the pattern descriptions.

Though focusing on data access costs, our model does not ignore CPU costs. We
presented a simple but effective calibration approach that allows to automatically mea-
sure the CPU costs of each algorithm and its various implementations. An investiga-
tion as to whether and how CPU costs can be modeled in more details is left to future
research.

Chapter 5

Self-tuning Cache-conscious
Join Algorithms

In the past decade, the exponential growth in commodity CPUs’ speed has far out-
paced advances in memory latency. A second trend is that CPU performance ad-
vances are not only brought by increased clock rate, but also by increasing parallelism
inside the CPU. Current database systems have not yet adapted to these trends, and
show poor utilization of both CPU and memory resources on current hardware. We
discussed these issues in detail in Chapter 3. In this chapter, we show how these re-
sources can be optimized for large joins. We refine the partitioned hash-join with a
new partitioning algorithm called radix-cluster, which is specifically designed to opti-
mize memory access. The algorithms are designed to be tuned at runtime to achieve
the optimal performance given the underlying hardware and the actual data to be pro-
cessed. Tuning is done be means of just three parameters. We will demonstrate, how
the cost models developed in Chapter 4 allow us to determine the optimal values for
these parameters automatically at runtime. Finally, we investigate the effect of im-
plementation techniques that optimize CPU resource usage. It turns out, that the full
benefit of memory access optimization can only be achieved, if also the CPU resource
usage is minimized. Exhaustive experiments on four different architectures show that
large joins can be accelerated almost an order of magnitude on modern RISC hardware
when both memory and CPU resources are optimized.

5.1 Introduction

Custom hardware—from workstations to PCs—has experienced tremendous perfor-
mance improvements in the past decades. Unfortunately, these improvements are not
equally distributed over all aspects of hardware performance and capacity. Figure 3.1
shows that the speed of commercial microprocessors has increased roughly 50% every
year, while the access latency of commodity DRAM has improved by little more than
10% over the past decade [Mow94]. One reason for this is that there is a direct trade-

106 5 Self-tuning Cache-conscious Join Algorithms

off between capacity and speed in DRAM chips, and the highest priority has been for
increasing capacity. The result is that from the perspective of the processor, memory
is getting slower at a dramatic rate, making it increasingly difficult to achieve high
processor efficiencies. Another trend is the ever increasing number of inter-stage and
intra-stage parallel execution opportunities provided by multiple execution pipelines
and speculative execution in modern CPUs. Current database systems on the market
make poor use of these new features; studies on several DBMS products on a variety of
workloads [ADHW99, BGB98, KPH+98, TLPZT97] consistently show modern CPUs
to be stalled (i.e., non-working) most of the execution time.

In this chapter, we show how large main-memory joins can be accelerated by
optimizing memory and CPU resource utilization on modern hardware. These op-
timizations involve radical changes in database architecture, encompassing new data
structures, query processing algorithms, and implementation techniques. Our findings
are summarized as follows:

• Memory access is a bottleneck to query processing.We demonstrated in Sec-
tion 3.2 that the performance of even simple database operations is nowadays
severely constrained by memory access costs. For example, a simple in-memory
table scan runs on Sun hardware from the year 2000 in roughly the same abso-
lute time as on a Sun from 1992, now spending 95% of its cycles waiting for
memory (see Section 3.2). It is important to note that this bottleneck affects
database performance in general, not only main-memory database systems.

• Data structures and algorithms should be tuned for memory access.We discuss
database techniques to avoid the memory access bottleneck, both in the fields of
data structures and query processing algorithms. The key issue is to optimize the
use of the various caches of the memory subsystem. We show howvertical table
fragmentationoptimizes sequential memory access to column data. For equi-
join, which has a random access pattern, we refine partitioned hash-join with a
newradix-clusteralgorithm which makes its memory access pattern more easy
to cache. Our experiments indicate that large joins can strongly benefit from
these techniques.

• Memory access costs can be modeled precisely.Cache-aware algorithms and
data structures must be tuned to the memory access pattern imposed by a query
and hardware characteristics such as cache sizes and miss penalties, just like
traditional query optimization tunes the I/O pattern imposed by a query to the
size of the buffers available and I/O cost parameters. Therefore it is necessary to
have models that predict memory access costs in detail. We apply the techniques
presented in Chapter 4 to provide such detailed models for our partitioned hash-
join algorithms. These models use an analytical framework that predicts the
number of hardware events (e.g., cache misses and CPU cycles), and scores
them with hardware parameters. The experiments in this chapter confirm both
the usability and the accuracy of our generic cost models.

• Memory optimization and efficient coding techniques boost each others effects.
CPU resource utilization can be optimized using implementation techniques

5.1 Introduction 107

known from high-performance computing [Sil97] and main-memory database
systems [Ker89, BK99]. We observe that applying these optimizations in com-
bination with memory optimizations yields a higher performance increase than
applying them without memory optimizations. The same is also the case for
memory optimizations: they turn out to be more effective on CPU-optimized
code than on non-optimized code. Our experiments show that database per-
formance can be improved by an order of magnitude applying both CPU and
memory optimization techniques.

Our research group has studied large main-memory database systems for the past
10 years. This research started in the PRISMA project [AvdBF+92], focusing on
massive parallelism, and is now centered around Monet: a high-performance system
targeted to query-intensive application areas like OLAP and data mining (cf., Sec-
tion 2.7). We use Monet as our experimentation platform.

5.1.1 Related Work

Database system research into the design of algorithms and data structures that opti-
mize memory access, has been relatively scarce. Our major reference is the work by
Shatdal et al. [SKN94], which shows that join performance can be improved using a
main-memory variant of Grace Join, in which both relations are first hash-partitioned
in chunks that fit the (L2) memory cache. There were various reasons that lead us
to explore this direction of research further. First, after its publication, the observed
trends in custom hardware have continued, deepening thememory access bottleneck.
For instance, the authors list a mean performance penalty for a cache miss of 20-30
cycles in 1994, while a range of 100-300 is typical in 2002 (and rising). This increases
the benefits of cache optimizations, and possibly changes the trade-offs. Another de-
velopment has been the introduction of so-called level-one (L1) caches, which are
typically very small regions on the CPU chip that can be accessed at almost CPU
clock-speed. The authors of [SKN94] provide algorithms that are only feasible for
the relatively larger off-chip L2 caches. Finally, this previous work uses standard re-
lational data structures, while we argue, that the impact of memory access is so severe
that vertically fragmented data structures should be applied at the physical level of
database storage.

Though we consider memory-access optimization to be relevant for database per-
formance in general, it is especially important for main-memory databases, a field
that through time has received fluctuating interest within the database research com-
munity. In the 1980s [LC86a, LC86b, Eic89, Wil91, AP92, GMS92], when falling
DRAM prices seemed to suggest that most data would soon be memory-resident, its
popularity diminished in the 1990s, narrowing its field of application to real-time sys-
tems only. Currently, interest has revived into applications for small and distributed
database systems, but also in high performance systems for query-intensive applica-
tions, like data mining and OLAP. In our research, we focus on this latter category.
Example commercial systems are the Times-Ten product [Tea99], Sybase IQ [Syb96],
and Compaq’s Infocharger [Com98], which is based on an early version of Monet (cf.,

108 5 Self-tuning Cache-conscious Join Algorithms

Section 2.7).
Past work on main-memory query optimization [LN96, WK90] models the main-

memory costs of query processing operators on the coarse level of procedure calls,
using profiling to obtain some ’magical’ constants. As such, these models do not
provide insight in individual components that make up query costs, limiting their pre-
dictive value. Conventional (i.e., non main-memory) cost modeling, in contrast, has
I/O as the dominant cost aspect, making it possible to formulate accurate models based
on the amount of predicted I/O work. Calibrating such models is relatively easy, as
statistics on the I/O accesses caused during an experiment are readily available in a
database system. Past work on main-memory systems was unable to provide such cost
models on a similarly detailed level, for two reasons. First, it was difficult to model
the interaction between low-level hardware components like CPU, Memory Manage-
ment Unit, bus, and memory caches. Second, it was impossible to measure the status
of these components during experiments, which is necessary for tuning and calibra-
tion of models. Modern CPUs, however, contain performance counters for events like
cache misses, and exact CPU cycles [BZ98, ZLTI96, Yea96]. This enabled us to de-
velop a new main-memory cost modeling methodology that first mimics the memory
access pattern of an algorithm, yielding a number of CPU cycle and memory cache
events, and then scores this pattern with an exact cost prediction (see Chapter 4).
Therefore, the contribution of the algorithms, models, and experiments presented here
is to demonstrate that detailed cost modeling of main-memory performance is both
important and feasible.

5.1.2 Outline

In Section 5.2, we introduce theradix-clusteralgorithm, which improves the parti-
tioning phase in partitioned hash-join by trading memory access costs for extra CPU
processing. We perform exhaustive experiments where we use CPU event counters to
obtain detailed insight in the performance of this algorithm. First, we vary the par-
tition sizes, to show the effect of tuning the memory access pattern to the memory
cache sizes. Second, we investigate the impact of code optimization techniques for
main-memory databases. These experiments show that improvements of almost an
order of magnitude can be obtained by combining both techniques (cache tuning and
code optimization) rather than by each one individually. Our results are fully explained
by detailed models of both the partition (radix-cluster) and join phase of partitioned
hash-join. We show how performance can exactly be predicted from hardware events
like cache and TLB misses, and thus validate the generic cost modeling techniques
we developed in the previous chapter. The design of our algorithms paired with the
ability to accurately predict there performance build the foundation for automatically
tune the algorithms at runtime to yield the efficient utilization of CPU and memory
resources.

In Section 5.3, we presentradix-join as an alternative to partitioned hash-join, and
compare the performance of both algorithms.

In Section 5.4, we evaluate our findings and show how they support the choices we
made back in 1994 when designing Monet, which uses full vertical fragmentation and

5.2 Partitioned Hash-Join 109

57

17

47

03

92

81

03

17

57

81

92

H

1−Pass Cluster

H different cluster buffers
Figure 5.1: Straightforward

cluster algorithm

(001)

(001)

(011)

(111)

(100)

(001)

(100)

(110)

(000)

(101)

(010)

(001)

57

17

47

03

92

81

20

06

96

37

66

75

1

0

1

(000)

(001)

(001)

(001)

(001)

(010)

(011)

(100)

(100)

(101)

(110)

(111)

96

57

17

81

75

66

03

92

20

37

06

47

1

0

1

0

0

00

01

(001)

(001)

(001)

(000)

(001)

(011)

(010)

(100)

(100)

(101)

(111)

(110)

57

17

81

96

75

03

66

92

20

37

47

06

11

10

2

2

2

2

Pass 1 (2 bits)

4

Pass 2 (1 bit)

Figure 5.2: 2-pass/3-bit Radix Cluster (lower bits in-
dicated between parentheses)

implementation techniques optimized for main memory to achieve high performance
on modern hardware. We conclude with recommendations for future systems.

5.2 Partitioned Hash-Join

Shatdal et al. [SKN94] showed that a main-memory variant of Grace Join, in which
both relations are first partitioned on hash-number intoH separateclusters, that each
fit the memory cache, performs better than normal bucket-chained hash join. This
work employs a straightforward clustering-algorithm that simply scans the relation
to be clustered once, inserting each scanned tuple in one of the clusters, as depicted
in Figure 5.1. This constitutes a random access pattern that writes intoH separate
locations. IfH is too large, there are two factors that degrade performance. First, ifH
exceeds the number of TLB entries1 each memory reference will become aTLB miss.
Second, ifH exceeds the number of available cache lines (L1 or L2),cache thrashing
occurs, causing the number of cache misses to explode.

As an improvement over this straightforward algorithm, we propose a clustering
algorithm that has a memory access pattern that requires less random-access, even for
high values ofH.

1If the relation is very small and fits the total number of TLB entries times the page size, multiple
clusters will fit into the same page and this effect will not occur.

110 5 Self-tuning Cache-conscious Join Algorithms

5.2.1 Radix-Cluster Algorithm

Theradix-clusteralgorithm divides a relationU into H clusters using multiple passes
(see Figure 5.2). Radix-clustering on the lowerB bits of the integer hash-value of a
column is achieved inP sequential passes, in which each pass clusters tuples onBp

bits, starting with the leftmost bits (
∑P

1 Bp = B). The number of clusters created by the
radix-cluster isH =

∏P
1 Hp, where each pass subdivides each cluster intoHp = 2Bp

new ones. When the algorithm starts, the entire relation is considered one single
cluster, and is subdivided intoH1 = 2B1 clusters. The next pass takes these clusters
and subdivides each intoH2 = 2B2 new ones, yieldingH1 ∗ H2 clusters in total, etc..
Note that withP = 1, radix-cluster behaves like the straightforward algorithm.

For ease of presentation, we did not use a hash function in the table of integer
values displayed in Figure 5.2. In practice, though, it is better to use such a function
even on integers in order to ensure that all bits of the table values play a role in the
lower bits of the radix number.

The interesting property of the radix-cluster is that the number of randomly ac-
cessed regionsHx can be kept low; while still a high overall number ofH clusters can
be achieved using multiple passes. More specifically, if we keepHx = 2Bx smaller
than the number of cache lines and the number of TLB entries, we totally avoid both
TLB and cache thrashing.

After radix-clustering a column onB bits, all tuples that have the sameB lowest
bits in its column hash-value, appear consecutively in the relation, typically forming
chunks of|U |/2B tuples (with|U | denoting the cardinality of the entire relation). It is
therefore not strictly necessary to store the cluster boundaries in some additional data
structure; an algorithm scanning a radix-clustered relation can determine the cluster
boundaries by looking at these lowerB “radix-bits”. This allows very fine clusterings
without introducing overhead by large boundary structures. It is interesting to note that
a radix-clustered relation is in factorderedon radix-bits. When using this algorithm
in the partitioned hash-join, we exploit this property, by performing a merge step on
the radix-bits of both radix-clustered relations to get the pairs of clusters that should
be hash-joined with each other.

5.2.2 Quantitative Assessment

The radix-cluster algorithm presented in the previous section provides three tuning
parameters:

1. the number of radix-bits used for clustering (B), implying the number of clusters
H = 2B,

2. the number of passes used during clustering (P),

3. the number of radix-bits used per clustering pass (Bp).

In the following, we present an exhaustive series of experiments to analyze the
performance impact of different settings of these parameters. After establishing which

5.2 Partitioned Hash-Join 111

parameter settings are optimal for radix-clustering a relation onB radix-bits, we turn
our attention to the performance of the join algorithm with varying values ofB. For
both phases, clustering and joining, we investigate how appropriate implementations
techniques can improve the performance even further. Finally, these two experiments
are combined to gain insight in the overall join performance.

5.2.2.1 Experimental Setup

In our experiments, we use binary relations (BATs) of 8 bytes wide tuples and varying
cardinalities (|U |), consisting of uniformly distributed random numbers. Each value
occurs three times. Hence, in the join-experiments, the join hit-rate is three. The result
of a join is a BAT that contains the [OID,OID] combinations of matching tuples (i.e.,
a join-index [Val87]). Subsequent tuple reconstruction is cheap in Monet, and equal
for all algorithms, so just like in [SKN94] we do not include it in our comparison.
The experiments were carried out on the machines presented in Section 3.3, an SGI
Origin2000, a Sun Ultra, an Intel PC, and an AMD PC (cf., Table 3.2).

To analyze the performance behavior of our algorithms in detail, we break down
the overall execution time into the following major categories of costs:

memory accessIn addition to memory access costs for data as analyzed above, this
category also contains memory access costs caused by instruction cache misses.

CPU stalls Beyond memory access, there are other events that make the CPU stall,
like branch mispredictions or other so-called resource related stalls.

divisions We treat integer divisions separately, as they play a significant role in our
hash-join (see below).

real CPU This is the remaining time, i.e., the time the CPU is indeed busy executing
the algorithms.

The four architectures we investigate, provide different hardware counters [BZ98]
that enable us to measure each of these cost factors accurately. Table 5.1 gives an
overview of the counters used. Some counters yield the actual CPU cycles spent
during a certain event, others just return the number of events that occurred. In the
latter case, we multiply the counters by the penalties of the events (as calibrated in
Section 3.3). None of the architectures provides a counter for the pure CPU activ-
ity. Hence, we subtract the cycles spent on memory access, CPU stalls, and integer
division from the overall number of cycles and assume the rest to be pure CPU costs.

In our experiments, we found that in our algorithms, branch mispredictions and
instruction cache misses do not play a role on either architecture. The reason is that,
in contrast to most commercial DBMSs, Monet’s code base is designed for efficient
main-memory processing. Monet uses a very large grain size for buffer management
in its operators (an entire BAT), processing therefore exhibits much code locality dur-
ing execution, and hence avoids instruction cache misses and branch mispredictions.
Thus, for simplicity of presentation, we omit these events in our evaluation.

112 5 Self-tuning Cache-conscious Join Algorithms

category MIPS R10k Sun UltraSPARC Intel PentiumIII AMD Athlon

memory L1 d miss *6cy DC missa *6cy DCU miss DC refill L2 *27cy
access L2 d miss*100cy EC missb *39cy outstanding DC refill sys *103cy

TLB miss *57cy MTLB *54cy MTLB *5cy L1 DTLB miss *5cy
L2 DTLB miss*52cy

L1 i miss *6cy
L2 i miss *100cy

stall IC miss IFU mem stall IC miss*27cy

ITLB miss L1 ITLB miss *5cy
*32cyc L2 ITLB miss *52cy

CPU br mispred *4cy stall mispred br mispred branches mispred
stalls stall fpdep *17cyd

ILD stalled
resource stallse

partial rat stalls
divisions |U | ∗ 2 ∗ 35cy |U | ∗ 2 ∗ 60cy cycles div busy |U | ∗ 2 ∗ 40cy

aDC misses= DC read - DCreadhit + DC write - DC write hit.
bEC misses= EC ref - EC hit.
cTaken from [ADHW99].
dTaken from [ADHW99].
eThis counter originally includes “DCUmiss outstanding”. We use only the remaining part after sub-

tracting “DCU missoutstanding”, here.

Table 5.1: Hardware Counters used for Execution Time Breakdown

5.2.2.2 Radix Cluster

To analyze the impact of all three parameters (B, P, Bp) on radix clustering, we con-
duct two series of experiments, keeping one parameter fixed and varying the remaining
two.

First, we conduct experiments with various numbers of radix-bits and passes, dis-
tributing the radix-bits evenly across the passes. Figure 5.3 shows an execution time
breakdown for 1-pass radix-cluster (|U | = 8M) on each architecture. The pure CPU
costs are nearly constant across all numbers of radix-bits, taking about 3 seconds on
the Origin, 5.5 seconds on the Sun, 2.5 seconds on the PentiumIII, and a about 1.7 sec-
onds on the Athlon. Memory and TLB costs are low with small numbers of radix-bits,
but grow significantly with rising numbers of radix-bits. With more than 6 radix-bits,
the number of clusters to be filled concurrently exceeds the number of TLB entries
(64), causing the number of TLB misses to increase significantly. On the Origin and
on the Sun, the execution time increases significantly due to their rather high TLB miss
penalties. On the PentiumIII however, the impact of TLB misses is hardly visible due
to its very low TLB miss penalty. The same holds for TLB1 misses on the Athlon,
while the impact of the more expensive TLB2 misses is clearly visible. Analogously,
the memory costs increase as soon as the number of clusters exceeds the number of L1
and L2 cache lines, respectively. Further, on the PentiumIII, “resource related stalls”
(i.e., stalls due to functional unit unavailability) play a significant role. They make up
one fourth of the execution time when the memory costs are low. When the memory

5.2 Partitioned Hash-Join 113

 0

 2

 4

 6

 8

10

12

14

16

18

20

22

24

 0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

TLB L1 L2

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB
L1 data

L2 data
CPU

a) Origin2000

 0

 2

 4

 6

 8

10

12

14

16

18

20

22

24

 0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
TLB L1 L2

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB (model)
L1 data

L2 data
CPU

b) Sun Ultra

 0

 2

 4

 6

 8

10

12

14

 0 5 10 15 20
0.0

1.0

2.0

3.0

4.0

5.0

6.0

TLB L1 L2

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

resource stalls
TLB (model)

DCU misses
CPU

c) Intel PC

 0

 2

 4

 6

 8

10

12

14

 0 5 10 15 20
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0
T1 T2 L1 L2

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB1 + TLB2
L1

L2
CPU

d) AMD PC

(Vertical grid lines indicate, where H = 2B equals #TLB , #L1, or #L2, respectively.)

Figure 5.3: Execution Time Breakdown of Radix-Cluster using one pass (|U | = 8M)

114 5 Self-tuning Cache-conscious Join Algorithms

 0

 2

 4

 6

 8

10

12

14

16

18

20

 0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

P=1 P=2

TLB
L1 data

L2 data
CPU

a) Origin2000

 0

 2

 4

 6

 8

10

12

14

16

18

20

 0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

P=1 P=2

TLB (model)
L1 data

L2 data
CPU

b) Sun Ultra

 0

 2

 4

 6

 8

10

 0 5 10 15 20
0.0

1.0

2.0

3.0

4.0

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

P=1 P=2

resource stalls
TLB (model)

DCU misses
CPU

c) Intel PC

 0

 2

 4

 6

 8

10

 0 5 10 15 20
0.0

1.0

2.0

3.0

4.0

5.0

6.0

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

P=1 P=2

TLB1 + TLB2
L1

L2
CPU

d) AMD PC

Figure 5.4: Execution Time Breakdown of Radix-Cluster using optimal number of
passes (|U | = 8M)

costs rise, the resource related stalls decrease and finally vanish completely, reducing
the impact of the memory penalty. In other words, minimizing the memory access
costs does not fully pay back on the PentiumIII, as the resource related stalls partly
take over their part. The Athlon, however, does not seem to suffer from such “resource
related stalls”.

Figure 5.4 depicts the breakdown for radix-cluster using the optimal number of

5.2 Partitioned Hash-Join 115

#define HASH(v) ((v>>7) XOR (v>>13) XOR (v>>21) XOR v)
typedef struct{

int v1,v2; /* simplified binary tuple */
} bun;

radix cluster(bun *dst[2D], bun *dst end[2D] /* output buffers for created clusters */
bun *rel, bun *relend, /* input relation */
int R, int D /* radix and cluster bits */

){
int M = (2D - 1) << R;
for(bun*cur=rel; cur<rel end; cur++) {

int idx = (*hashFcn)(cur→v2)&M; int idx = HASH(cur→v2)&M;
memcpy(dst[idx], cur, sizeof(bun)); *dst[idx] = *cur;
if (++dst[idx]≥dst end[idx]) REALLOC(dst[idx],dstend[idx]);

}

}

Figure 5.5: C language radix-cluster with annotated CPU optimizations (right)

passes. The idea of multi-pass radix-cluster is to keep the number of clusters generated
per pass low—and thus the memory costs—at the expense of increased CPU costs.
Obviously, the CPU costs are too high to avoid the TLB costs by using two passes with
more than 6 radix-bits. Only with more than 15 radix-bits—i.e., when the memory
costs exceed the CPU costs—two passes win over one pass. The only exception is the
Athlon, where multi-pass radix-cluster benefits from the high clock speed, and hence,
two passes outperform one pass already from 11 radix-bits onward.

The only way to improve this situation is to reduce the CPU costs. Figure 5.5
shows the source code of our radix-cluster routine. It performs a single-pass clustering
on theD bits that startR bits from the right (multi-pass clustering inP > 1 passes on
B = P ∗ D bits is done by making subsequent calls to this function for passp = 1
through p = P with parametersDp = D andRp = (p − 1) ∗ D, starting with the
input relation and using the output of the previous pass as input for the next). As the
algorithm itself is already very simple, improvement can only be achieved by means
of implementation techniques. We replaced the generic ADT-like implementation by
a specialized one for each data type. Thus, we could inline the hash function and
replace thememcpy by a simple assignment, saving two function calls per iteration.

Figure 5.6 shows the execution time breakdown for the optimized 1-pass radix-
cluster. The CPU costs have reduced significantly, by almost a factor 4. Replacing
the two function calls has two effects. First, some CPU cycles are saved. Second, the
CPUs can benefit more from the internal parallel capabilities using speculative execu-
tion, as the code has become simpler and parallelization options more predictable. On
the PentiumIII, the resource stalls have doubled, neutralizing the CPU improvement
partly. We think the simple loop does not consist of enough instructions to fill the
relatively long pipelines of the PentiumIII efficiently.

The results in Figure 5.7 indicate that with the optimized code, multi-pass radix-
cluster is feasible already with smaller numbers of radix-bits. On the Origin, two
passes win with more than 6 radix-bits, and three passes win with more than 13 radix-

116 5 Self-tuning Cache-conscious Join Algorithms

 0

 2

 4

 6

 8

10

12

14

16

18

20

 0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

TLB L1 L2

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB
L1 data

L2 data
CPU

a) Origin2000

 0

 2

 4

 6

 8

10

12

14

16

18

20

 0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

TLB L1 L2

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB (model)
L1 data

L2 data
CPU

b) Sun Ultra

 0

 2

 4

 6

 8

10

12

14

 0 5 10 15 20
0.0

1.0

2.0

3.0

4.0

5.0

6.0

TLB L1 L2

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

resource stalls
TLB (model)

DCU misses
CPU

c) Intel PC

 0

 2

 4

 6

 8

10

12

14

 0 5 10 15 20
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

T1 T2 L1 L2

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB1 + TLB2
L1

L2
CPU

d) AMD PC

(Vertical grid lines indicate, where H = 2B equals #TLB , #L1, or #L2, respectively.)

Figure 5.6: Execution Time Breakdown of optimized Radix-Cluster using one pass
(|U | = 8M)

5.2 Partitioned Hash-Join 117

 0

 2

 4

 6

 8

 0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

P=1 P=2 P=3

TLB
L1 data

L2 data
CPU

a) Origin2000

 0

 2

 4

 6

 8

 0 5 10 15 20
0.0

0.5

1.0

1.5

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

P=1 P=2

TLB (model)
L1 data

L2 data
CPU

b) Sun Ultra

 0

 2

 4

 6

 0 5 10 15 20
0.0

1.0

2.0

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

P=1 P=2

resource stalls
TLB (model)

DCU misses
CPU

c) Intel PC

 0

 2

 4

 6

 0 5 10 15 20
0.0

1.0

2.0

3.0

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

P=1 P=2 P=3

TLB1 + TLB2
L1

L2
CPU

d) AMD PC

Figure 5.7: Execution Time Breakdown of optimized Radix-Cluster using optimal
number of passes (|U | = 8M)

bits, thus avoiding TLB thrashing nearly completely. Analogously, the algorithm cre-
ates at most 512 clusters per pass on the AMD PC, avoiding L1 thrashing which is
expensive due to the rather high L1 miss penalty on the Athlon. For the PentiumIII,
however, the improvement is marginal. The severe impact of resource stalls with low
numbers of radix-bits makes the memory optimization of multi-pass radix-cluster al-
most ineffective.

In order to effectively exploit the performance potential of our radix-cluster algo-
rithm, we need to know the optimal number of passes to be used with a given number
of radix-bits on a given machine. Obviously, we could give a rule of thumb for each
machine we discussed here, like “Never use more than 6 bits (64 clusters) per pass on
an Origin2000.” However, a more general approach is clearly desirable. Our proposal
is to build a cost function for radix-cluster, that allows us to estimate and compare the
performance for various numbers of passes. The best performance determines the op-
timal numbers of passes. We use the techniques we presented in Chapter 4 to create a
cost function for radix-cluster estimating the total execution time as sum of pure CPU
time and memory access time. WithU describing the input data region,B denoting

118 5 Self-tuning Cache-conscious Join Algorithms

the requested number of radix-bits, andP being the number of passes, we get

Trc(U, B,P) = Trc
CPU(U,P) + Trc

Mem(U, B,P).

The pure CPU costs are equal for all passes and independent of the number of bits
used. For each pass, the pure CPU costs consist of a fixed start-up costcrc

0 and the per-
tuple costscrc

1 . We determinecrc
0 andcrc

1 using calibration as described in Section 4.6.
Hence, we have

Trc
CPU(U,P) = P · (crc

0 + |U | · c
rc
1).

The memory access cost is determined by the data access pattern. With each pass,
radix-cluster sequentially reads the input and puts each tuple into one ofHp = 2Bp

output clusters. Within each cluster, the access is sequential, but the clusters are ac-
cessed in a random order. Hence, we model the data access pattern of radix-cluster
by

{U j}|
2B

j=1← radix cluster(U, B,P) :

⊕ |Pp=1

(
s travs(U) � nest

(
{U j}|

2Bp

j=1,2
Bp, s travs(U j), ran

))
.

Trc
Mem(U, B,P) is then calculated by estimating the number of cache misses and scoring

them with their latency as described in Chapter 4.
Figure 5.8 compares the predicted events (lines) with the events observed during

our experiments (points) on the Origin2000 for different cardinalities. The model ac-
curately predicts the performance crucial behavior of radix-cluster, i.e., the steep raise
in cache/TLB misses as soon as we generate more clusters per pass than there are
cache lines respectively TLB entries. According to Figure 5.9, scoring the misses
with their latency yields a reasonably accurate prediction of the total execution time
on all architectures. The plots clearly reflect the impact of increasing cache and TLB
misses on the execution time. Hence, our model provides sufficiently accurate infor-
mation to determine the optimal number of passes for a given number of radix-bits.
The effort needed to do so is quite limited. Consider the largest table in our experi-
ments, containing 64,000,000 tuples. In the worst case, we need to create 64,000,000
clusters, each containing only a single tuple. Hence, we use at most 26 radix-bits. This
means that theoretically at most 26 alternatives need to be compared. However, our
experiments indicate, that we do not have to use more passes than we need to stay just
within the smallest cache. With the 64-entry TLBs being the smallest caches in our
case, there is no need to use less than 5 bits per pass, hence we can restrict the search
to just

⌈
26
5

⌉
= 6 alternatives.

The question remaining is how to distribute the number of radix-bits over the
passes. Of course, we could also use our cost model, here. However, with

(
B−1
P−1

)
ways to distributeB radix-bits onP passes, the number of alternatives that need to be
explored grows rapidly. For instance in our previous example, we need to distribute
26 bits on up to 6 passes, hence a total of

6∑
j=1

(
26− 1
j − 1

)
= 68,406

5.2 Partitioned Hash-Join 119

 0 5 10 15 20 25

L1

number of radix-bits (B)

104

105

106

107

108

|U|=
 P =

64000000
4

a) L1 misses

 0 5 10 15 20 25

L2

number of radix-bits (B)

103

104

105

106

107

108

8000000
3

1000000
2

b) L2 misses

 0 5 10 15 20 25

TLB L2

number of radix-bits (B)

102

103

104

105

106

107

108

125000
1

15625

c) TLB misses

(Point types indicate cardinalities, line types indicate number of passes; vertical grid lines indicate, where
the number of clusters created equals the number of TLB entries, L1, or L2 cache lines, respectively.)

Figure 5.8: Measured (points) and Modeled (lines) Events of Radix-Cluster
(Origin2000)

candidates would need to be checked to find the best values forP, B1, . . . , BP.

Alternatively, we consider the following empirical approach. We conducted an-
other number of experiments, using a fix number of passes, but varying the number of
radix-bits per pass. Figure 5.10 depicts the respective results for 4, 8, 12, 16, 20, and

24 radix-bits, using 2 passes. The x-axis showsB +
B1

5
, hence, for each number of

radix-bits (B = B1 + B2) there is a short line segment consisting ofB− 1 points. The
first (leftmost) point of each segment representsB1 = 1, B2 = B − 1, the last (right-
most) point representsB1 = B − 1, B2 = 1. The results show, that even distribution

of radix-bits (B1 ≈ B2 ≈
B
2

) achieves the best performance. Indeed, these results are

quite intuitive, as even distribution of radix-bits minimizes the maximum number of
bits per pass.

120 5 Self-tuning Cache-conscious Join Algorithms

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

 0 5 10 15 20 25

TLB L1 L2

m
ill

is
ec

on
ds

number of radix-bits (B)

|U|= 64000000 8000000

a) Origin2000

 0 5 10 15 20 25
1e+00

1e+01

1e+02

1e+03

1e+04

1e+05
TLB L1 L2

m
ill

is
ec

on
ds

number of radix-bits (B)

1000000 125000 15625

b) Sun Ultra

1e+00

1e+01

1e+02

1e+03

1e+04

 0 5 10 15 20 25

TLB L1 L2

m
ill

is
ec

on
ds

number of radix-bits (B)

 P = 4 3

c) Intel PC

 0 5 10 15 20 25
1e+00

1e+01

1e+02

1e+03

1e+04
TLB1 TLB2 L1 L2

m
ill

is
ec

on
ds

number of radix-bits (B)

2 1

d) AMD PC

(Point types indicate cardinalities, line types indicate number of passes; vertical grid lines indicate, where
the number of clusters created equals the number of TLB entries, L1, or L2 cache lines, respectively.)

Figure 5.9: Measured (points) and Modeled (lines) Performance of Radix-Cluster

5.2 Partitioned Hash-Join 121

1e+01

1e+02

1e+03

1e+04

1e+05

4 8 12 16 20 24

ex
ec

ui
to

n
tim

e
[m

s]

B+(B1/5)

16000000
4000000
1000000

250000
62500

Figure 5.10: Bit-distribution for 2-pass Radix-Cluster

5.2.2.3 Isolated Partitioned Hash-Join Performance

We now analyze the impact of the number of radix-bits on the pure join performance,
not including the clustering costs. With 0 radix-bits, the join algorithm behaves like a
simple non-partitioned hash-join.

The partitioned hash-join exhibits increased performance with increasing number
of radix-bits. Figure 5.11 shows that this behavior is mainly caused by the mem-
ory costs. While the CPU costs are almost independent of the number of radix-bits,
the memory costs decrease with increasing number of radix-bits. The performance
increase flattens past the point where the entire inner cluster (including its hash ta-
ble) consists of less pages than there are TLB entries (64). Then, it also fits the L2
cache comfortably. Thereafter, performance increases only slightly until the point that
the inner cluster fits the L1 cache. Here, performance reaches its maximum. The
fixed overhead by allocation of the hash-table structure causes performance to de-
crease when the cluster sizes get too small and clusters get very numerous. Again,
the PentiumIII shows a slightly different behavior. TLB costs do not play any role,
but “partial stalls” (i.e., stalls due to dependencies among instructions) are significant
with small numbers of radix-bits. With increasing numbers of clusters, the partial
stalls decrease, but then, resource stalls increase, almost neutralizing the memory op-
timization.

Like with radix-cluster, once the memory access is optimized, the execution of
partitioned hash-join is dominated by CPU costs. Hence, we applied the same op-
timizations as above. We inlined the hash-function calls during hash build and hash
probe as well as the compare-function call during hash probe and replaced twomemcpy

by simple assignments, saving five function calls per iteration. Further, we replaced
the modulo division (“%”) for calculating the hash index by a bit operation (“&”).
Figure 5.12 depicts the original implementation of our hash-join routine and the opti-

122 5 Self-tuning Cache-conscious Join Algorithms

 0

 5

10

15

20

25

30

35

40

45

50

55

60

65

70

 0 5 10 15 20
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18
L2 TLB L1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB
L1 data

L2 data
CPU
FPU (div)

a) Origin2000

 0

 5

10

15

20

25

30

35

40

45

50

55

60

65

70

 0 5 10 15 20
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

L2 TLB L1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB (model)
L1 data

L2 data
CPU
FPU (div)

b) Sun Ultra

 0

 5

10

15

20

25

30

35

 0 5 10 15 20
 0

 2

 4

 6

 8

10

12

14

16
L2 TLB L1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

partial stalls
resource stalls
TLB (model)

DCU misses
CPU
divider

c) Intel PC

 0

 5

10

15

20

25

30

35

 0 5 10 15 20
 0
 2
 4
 6
 8
10
12
14
16
18
20

T2 L2 T1 L1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB1 + TLB2
L1

L2
CPU
FPU (div)

d) AMD PC

(Vertical grid lines indicate, where the cluster size equals TLB size, L1, or L2 cache size, respectively.)

Figure 5.11: Execution Time Breakdown of Partitioned Hash-Join (|U | = |V| = 8M)

5.2 Partitioned Hash-Join 123

hash join (bun *dst, bun *end /* start and end of result buffer */
bun *outer, bun *outerend, bun *inner, bun* innerend, /* inner and outer relations */
int R /* radix bits */

){
/* build hash table on inner * /
int pos=0, S=inner end-inner, H=log2(S), N=2H , M=(N-1)<<R;
int next[S], bucket[N]= { -1 }; /* hash bucket array and chain-lists */
for(bun *cur=inner; cur<inner end; cur++) {

int idx = ((*hashFcn)(cur→v2)>>R) % N; int idx = HASH(cur→v2) & M;
next[pos]= bucket[idx];
bucket[idx]= pos++;

}

/* probe hash table with outer* /
for(bun *cur=outer; cur<outerend; cur++) {

int idx = ((*hashFcn)(cur→v2)>>R) % N; int idx = HASH(cur→v2) & M;
for(int hit=bucket[idx]; hit≥0; hit=next[hit]) {

if ((*compareFcn)(cur→v2,inner[hit].v2)==0) { if ((cur→v2 == inner[hit].v2)) {
memcpy(&dst→v1,&cur→v1, sizeof(int)); dst→v1 = cur→v1;
memcpy(&dst→v2,&inner[hit].v1, sizeof(int)); dst→v2 = inner[hit].v1;
if (++dst≥end) REALLOC(dst,end);

}

}

}

}

Figure 5.12: C language hash-join with annotated CPU optimizations (right)

mizations we applied.
Figure 5.13 shows the execution time breakdown for the optimized partitioned

hash-join. For the same reasons as with radix-cluster, the CPU costs are reduced by
almost a factor 4 on the Origin and the Sun, by factor 3 on the PentiumIII, and by factor
2 on the Athlon. The expensive divisions have vanished completely. Additionally, the
dependency stalls on the PentiumIII have disappeared, but the functional unit stalls
remain almost unchanged, now taking about half of the execution time. It is interesting
to note the 450 MHz PC outperforms the 250 MHz Origin on non-optimized code, but
on CPU optimized code, where both RISC chips execute without any overhead, the
PC actually becomes slower due to this phenomenon of resource stalls.

Like with radix-cluster, we will now create a cost function for partitioned hash-
join that estimates the total execution time as sum of pure CPU time and memory
access time. LetU andV describe the left (outer) and right (inner) input data region,
respectively, andB denote the number of radix-bits that bothU andV are clustered
on. Further letW represent the output data region2

Tphj(U,V, B,W) = Tphj
CPU(U,V, B,W) + Tphj

Mem(U,V, B,W).

On each of theH = 2B pairs
〈
Up,Vp

〉
of matching partitions, partitioned hash-join

2Here, we useW to convey the results of a logical cost model, such as the estimates result size, to the
physical cost model.

124 5 Self-tuning Cache-conscious Join Algorithms

 0

 5

10

15

20

25

30

35

40

45

50

 0 5 10 15 20
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

L2 TLB L1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB
L1 data

L2 data
CPU
FPU (div)

a) Origin2000

 0

 5

10

15

20

25

30

35

40

45

50

 0 5 10 15 20
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10
L2 TLB L1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB (model)
L1 data

L2 data
CPU
FPU (div)

b) Sun Ultra

 0

 5

10

15

20

25

30

 0 5 10 15 20
 0

 2

 4

 6

 8

10

12

L2 TLB L1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

partial stalls
resource stalls
TLB (model)

DCU misses
CPU
divider

c) Intel PC

 0

 5

10

15

20

25

30

 0 5 10 15 20
 0

 2

 4

 6

 8

10

12

14

16

18
T2 L2 T1 L1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB1 + TLB2
L1

L2
CPU
FPU (div)

d) AMD PC

(Vertical grid lines indicate, where the cluster size equals TLB size, L1, or L2 cache size, respectively.)

Figure 5.13: Execution Time Breakdown: Optimized Partitioned Hash-Join (|U |=8M)

performs a simple hash-join. The latter in turn consists of two phases, first building the
hash table on the inner partitionVp, and then probing the outer partitionUp against
the hash table. The pure CPU cost of the first phase is linear in the cardinality of
Vp. The pure CPU cost of the second phase consists of two components. The first
represents the actual hash lookup, and is in our case linear in the cardinality ofUp (i.e.,

5.2 Partitioned Hash-Join 125

independent of the size of the hash table). The second component reflects the creation
of the actual result tuples, and is hence linear in the cardinality ofWp. Altogether, we
get

Thb
CPU(Vp) = chb

0 + |Vp| · c
hb
1

Thp
CPU(Up,Wp) = chp

0 + |Up| · c
hp
1 + |Wp| · c

hp
2

Thj
CPU(Up,Vp,Wp) = Thb

CPU(Vp) + Thp
CPU(Up,Wp)

Tphj
CPU(U,V, B,W) =

2B∑
p=1

Thj
CPU(Up,Vp,Wp)

We determine the respective cost constants using calibration as described in Sec-
tion 4.6.

To obtain the memory access costs, we describe the memory access pattern of
partitioned hash-join by combining the patterns of the single phases as follows:

V′p← hashbuild(Vp) :

s travs(Vp) � r trav(V′p)

=: build hash(Vp,V
′
p),

Wp← hashprobe(Up,V
′
p) :

s travs(Up) � r acc(|Up|,V
′
p) � s travs(Wp)

=: probe hash(Up,V
′
p,Wp),

Wp← hashjoin(Up,Vp) :

build hash(Vp,V
′
p) ⊕ probe hash(Up,V

′
p,Wp)

=: hash join(Up,Vp,Wp),

{Wp}|
2B

p=1← part hashjoin({Up}|
2B

p=1, {Vp}|
2B

p=1, B) :

⊕ |2
B

p=1(hash join(Up,Vp,Wp)).

The actual cost functions are then derived using the techniques of Chapter 4.
Figure 5.14 compares the predicted events (lines) with the events observed dur-

ing our experiments (points) on the Origin2000 for different cardinalities. The model
accurately predicts the performance crucial behavior of partitioned hash-join, i.e., the
significantly increased number of cache/TLB misses when using partition sizes that
exceed the respective caches capacities. The plots in Figure 5.15 confirm that the es-
timated execution times match the actual performance on all architectures reasonably
well.

126 5 Self-tuning Cache-conscious Join Algorithms

 0 5 10 15 20 25

||L1||

number of radix-bits (B)

104

105

106

107

108

109

64000000
32000000

16000000
8000000

a) L1 misses

 0 5 10 15 20 25

||L2||

number of radix-bits (B)

103

104

105

106

107

108

109

4000000
2000000

1000000
500000

b) L2 misses

 0 5 10 15 20 25

||TLB||

number of radix-bits (B)

102

103

104

105

106

107

108

109

250000
125000

62500
31250
15625

c) TLB misses

(Point types indicate cardinalities; diagonal lines indicate, where the cluster size equals TLB size, L1, or
L2 cache size, respectively.)

Figure 5.14: Measured (points) and Modeled (lines) Events of Partitioned Hash-Join
(Origin2000)

5.2.2.4 Overall Partitioned Hash-Join Performance

After having analyzed the impact of the tuning parameters on the clustering phase
and the joining phase separately, we now turn our attention to the combined cluster
and join costs. Radix-cluster gets cheaper for fewer radix-bits, whereas partitioned
hash-join gets more expensive. Putting together the experimental data we obtained on
both cluster- and join-performance, we determine the optimum number ofB for given
relation cardinality.

It turns out that there are three possible strategies, which correspond to the diago-
nals in Figure 5.15:

phash L2 partitioned hash-join onB = log2(|V′|∗V′/||L2||) clustered bits, so the inner
relation plus hash-table fits the L2 cache. This strategy was used in the work of
Shatdal et al. [SKN94] in their partitioned hash-join experiments.

phash TLB partitioned hash-join onB = log2(|V′| ∗ V′/||T LB||) clustered bits, so the

5.2 Partitioned Hash-Join 127

1e+01

1e+02

1e+03

1e+04

1e+05

 0 5 10 15 20 25

||L2|| ||TLB|| ||L1||

m
ill

is
ec

on
ds

number of radix-bits (B)

64000000 32000000 16000000

a) Origin2000

 0 5 10 15 20 25

1e+01

1e+02

1e+03

1e+04

1e+05

||L2|| ||TLB|| ||L1||

m
ill

is
ec

on
ds

number of radix-bits (B)

8000000 4000000 2000000

b) Sun Ultra

1e+01

1e+02

1e+03

1e+04

 0 5 10 15 20 25

||L2|| ||TLB|| ||L1||

m
ill

is
ec

on
ds

number of radix-bits (B)

1000000 500000 250000

c) Intel PC

 0 5 10 15 20 25

1e+01

1e+02

1e+03

1e+04

||T2|| ||L2|| ||T1|| ||L1||

m
ill

is
ec

on
ds

number of radix-bits (B)

125000 62500 31250 15625

d) AMD PC

(Point types indicate cardinalities; diagonal lines indicate, where the cluster size equals TLB size, L1, or
L2 cache size, respectively.)

Figure 5.15: Measured (points) and Modeled (lines) Time of Partitioned Hash-Join

128 5 Self-tuning Cache-conscious Join Algorithms

inner relation plus hash-table spans at most|T LB| pages. Our experiments show
a significant improvement of the pure join performance between phash L2 and
phash TLB.

phash L1 partitioned hash-join onB = log2(|V′|∗V′/||L1||) clustered bits, so the inner
relation plus hash-table fits the L1 cache. This algorithm uses more clustered
bits than the previous ones, hence it really needs the multi-pass radix-cluster
algorithm (a straightforward 1-pass cluster would cause cache thrashing on this
many clusters).

Figure 5.16 shows the overall performance for the original (thin lines) and the
CPU-optimized (thick lines) versions of our algorithms, using 1-pass and multi-pass
clustering. In most cases, phash TLB is the best strategy, performing significantly
better than phash L2. On the Origin2000 and the Sun, the differences between phash
TLB and phash L1 are negligible. On the PCs, phash L1 performs sightly better than
phash TLB. With very small cardinalities, i.e., when the relations do not span more
memory pages than there are TLB entries, clustering is not necessary, and the non-
partitioned hash-join (“simple hash”) performs best.

Using phash TLB seems to be a good choice the achieve reasonably good perfor-
mance on all architectures without any optimization effort. However, our goal is to
find and use the optimal strategy, also on architectures we have not evaluated here.
Our cost models provide the necessary tools to achieve this goal. Using the cost mod-
els, we can—at runtime—estimate the costs of radix-cluster and partitioned hash-join
for various numbers radix-bits (i.e., partition sizes). Thus, we can find the best set-
ting for number of radix-bits and number of cluster passes to be used in the actual
evaluation of the algorithms. Figure 5.17 compares the estimated performance (lines)
with the results of our experiments (points) for 8M tuples. Our models tend to over
estimate the “worst-case” costs, i.e., when using too large partitions for partitioned
hash-join or too many partitions for radix-cluster. But in the crucial area around the
optimal performance, they are rather accurate. Moreover, the models correctly predict
the optimum in almost all cases. In case they do not, the cost of the estimated optimum
only marginally differ from the actual optimum.

Further, the results in Figure 5.17 show that CPU and memory optimization sup-
port each other andboosttheir effects. The gain of CPU optimization for phash TLB
is bigger than that for simple hash, and the gain of memory optimization for the CPU-
optimized implementation is bigger than that for the non-optimized implementation.
For example, for large relations on the Origin 2000, CPU optimization improves the
execution time of simple hash by approximately a factor 1.25, whereas it yields a fac-
tor 3 with phash TLB. Analogously, memory optimization achieves an improvement
of slightly less than a factor 2.5 for the original implementation, but more than a fac-
tor 5 for the optimized implementation. Combining both optimizations improves the
execution time by almost a factor 10.

There are two reasons for the boosting effect to occur. First, modern CPUs try
to overlap memory access with other useful CPU computations by allowing indepen-
dent instructions to continue execution while other instructions wait for memory. In a

5.2 Partitioned Hash-Join 129

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

 0 5 10 15 20 25

L2 TLB L1

m
ill

is
ec

on
ds

number of radix-bits (B)

|U|=|V|= 64000000 8000000

a) Origin2000

 0 5 10 15 20 25

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06
L2 TLB L1

m
ill

is
ec

on
ds

number of radix-bits (B)

1000000 125000 15625

b) Sun Ultra

1e+01

1e+02

1e+03

1e+04

 0 5 10 15 20 25

L2 TLB L1

m
ill

is
ec

on
ds

number of radix-bits (B)

optimized mininum simple

c) Intel PC

 0 5 10 15 20 25

1e+01

1e+02

1e+03

1e+04

T2 L2 T1 L1

m
ill

is
ec

on
ds

number of radix-bits (B)

P= 1 2 3 4

d) AMD PC

(Line types indicate cardinalities, point types indicate number of passes; diagonal lines indicate, where the
cluster size equals TLB size, L1, or L2 cache size, respectively.)

Figure 5.16: Overall Performance of Partitioned Hash-Join: non-optimized (thin
lines) vs. optimized (thick lines) implementation

130 5 Self-tuning Cache-conscious Join Algorithms

10

20

30

40

50

60

70

80

 0 5 10 15 20

64M 2M 64k 2k 64

se
co

nd
s

number of radix-bits (B)

cluster size [bytes]

L2 TLB L1

original optimized

a) Origin2000

 0 5 10 15 20

10

20

30

40

50

60

70

80
64M 2M 64k 2k 64

se
co

nd
s

number of radix-bits (B)

cluster size [bytes]

L2 TLB L1

simple mininum

b) Sun Ultra

5

10

15

20

25

30

35

40

 0 5 10 15 20

64M 2M 64k 2k 64

se
co

nd
s

number of radix-bits (B)

cluster size [bytes]

L2 TLB L1

1 pass 2 passes

c) Intel PC

 0 5 10 15 20
5

10

15

20

25

30

35

40
64M 2M 64k 2k 64

se
co

nd
s

number of radix-bits (B)

cluster size [bytes]

T2 L2 T1 L1

3 passes 4 passes

d) AMD PC

(Vertical grid lines indicate, where the cluster size equals TLB size, L1, or L2 cache size, respectively.)

Figure 5.17: Measured (points) and Modeled (lines) Overall Performance of
Partitioned Hash-Join (|U | = |V| = 8M)

5.3 Radix-Join 131

memory-bound load, much CPU computation is overlapped with memory access time,
hence optimizing these computations has no overall performance effect (while it does
when the memory access would be eliminated by memory optimizations). Second,
an algorithm that allows memory access to be traded for more CPU processing (like
radix-cluster), can actually trade more CPU for memory when CPU-cost are reduced,
reducing the impact of memory access costs even more.

The Sun Ultra and the AMD PC achieve similar results like the Origin2000, al-
though the absolute gains are somewhat smaller. With the Ultra, the CPU is so slow
that trading memory for CPU less beneficial on this platform; with the AMD PC, the
memory access costs are somewhat lower than on the Origin2000, thus offering less
potential for improvements.

The overall effect of our optimizations on the PentiumIII is just over a factor 2.
One cause of this is the low memory latency on the Intel PC, that limits the gains when
memory access is optimized. The second cause is the appearance of the “resource-
stalls”, which surge in situations where all other stalls are eliminated (and both RISC
architectures are really steaming). We expect, though, that future PC hardware with
highly parallel IA-64 processors and new Rambus memory systems (that offer high
bandwidth but high latencies) will show a more RISC-like performance on our algo-
rithms.

5.3 Radix-Join

In this section, we present ourradix-join algorithm as an alternative for the parti-
tioned hash-join. Radix-join makes use of the very fine clustering capabilities of
radix-cluster. If the number of clustersH is high, the radix-clustering has brought
the potentially matching tuples near to each other. As cluster sizes are small, a simple
nested loop is then sufficient to filter out the matching tuples. Radix-join is similar
to hash-join in the sense that the numberH should be tuned to be the relation car-
dinality |U | divided by a small constant; just like the length of the bucket-chain in a
hash-table. If this constant gets down to 1, radix-join degenerates to sort/merge-join,
with radix-sort [Knu68] employed in the sorting phase.

5.3.1 Isolated Radix-Join Performance

Figure 5.18 shows the execution time breakdown for our radix-join algorithm (|U | =
1M). On all three architectures3, radix-join performs the better the more radix-bits are
used, i.e., the smaller the clusters are. With increasing cluster size, execution time
increases rapidly due to the nested-loop characteristic of radix-join. Only cluster sizes
that fit into the L1 cache are reasonable. Hence, memory access costs are small, and
the performance is dominated by CPU costs.

Like with radix-cluster and partitioned hash-join, we optimize our radix-join im-
plementation (cf., Figure 5.19) in order to reduce the CPU costs. Figure 5.20 depicts
the results for the optimized radix-join. For very small clusters, the optimizations

3Due to hardware problems, we have no results of radix-join on the AMD PC.

132 5 Self-tuning Cache-conscious Join Algorithms

 0

 5

10

15

20

25

30

35

 0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

L2 TLB L1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB
L1 data

L2 data
CPU

a) Origin2000

 0

 5

10

15

20

25

30

35

 0 5 10 15 20
0

1

2

3

4

5

6

7

L2 TLB L1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB
L1 data

L2 data
CPU

b) Sun Ultra

 0

 5

10

15

20

25

30

35

 0 5 10 15 20
0

2

4

6

8

10

12

14

16

L2 TLBL1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

stalls
TLB

DCU
CPU

c) Intel PC

(Vertical grid lines indicate, where the cluster size equals TLB size, L1, or L2 cache size, respectively.)

Figure 5.18: Execution Time Breakdown of Radix-Join (|U | = |V| = 1M)

yield an improvement of factor 1.25 (on the PC) to 1.5 (on the Origin2000). For larger
clusters, we observe similar improvements as with partitioned hash-join: factor 4.5
on the RISC architectures and factor 2.5 on the PC. We also note that functional unit
stalls (resource stalls) become clearly visible on the PC, as soon as the cluster size
reaches and exceeds L1 cache size.

We follow our usual schema to model the cost of radix-join.

Trj (U,V, B,W) = Trj
CPU(U,V, B,W) + Trj

Mem(U,V, B,W).

The total CPU costs are simply the sum of the CPU costs of executing a simple nested-
loop-join on all matching pairs of partitions. A simple nested-loop-join incurs constant
start-up cost (cnlj

0), quadratic comparison cost (cnlj
1), and linear result creation cost

5.3 Radix-Join 133

nestedloop(bun *dst, bun *end /* start and end of result buffer */
bun *outer, bun *outerend, bun *inner, bun* innerend, /* inner and outer relations */

){
for(bun *outercur=outer; outercur< outerend; outercur++) {

for(bun *innercur=inner; innercur< inner end; outercur++) {
if ((*compareFcn)(outercur→v2,innercur→v2)==0) { if ((outer cur→v2 == inner cur→v2)) {

memcpy(&dst→v1,&outer cur→v1, sizeof(int)); dst→v1 = outercur→v1;
memcpy(&dst→v2,&inner cur→v1, sizeof(int)); dst→v2 = inner cur→v1;
if (++dst≥end) REALLOC(dst,end);

}

}

}

Figure 5.19: C language nested-loop with annotated CPU optimizations (right)

 0

 5

10

15

20

25

 0 5 10 15 20
0

1

2

3

4

5

6

L2 TLB L1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB
L1 data

L2 data
CPU

a) Origin2000

 0

 5

10

15

20

25

 0 5 10 15 20
0

1

2

3

4

5

L2 TLB L1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

TLB
L1 data

L2 data
CPU

b) Sun Ultra

 0

 5

10

15

20

25

 0 5 10 15 20
0

2

4

6

8

10

L2 TLBL1

se
co

nd
s

cl
oc

ks
 (i

n
bi

lli
on

s)

number of radix-bits (B)

stalls
TLB

DCU
CPU

c) Intel PC

(Vertical grid lines indicate, where the cluster size equals TLB size, L1, or L2 cache size, respectively.)

Figure 5.20: Execution Time Breakdown of optimized Radix-Join (|U | = |V| = 1M)

(cnlj
2).

Tnlj
CPU(Up,Vp,Wp) = cnlj

0 + |Up| · |Vp| · c
nlj
1 + |Wp| · c

nlj
2

Trj
CPU(U,V, B,W) =

2B∑
p=1

Tnlj
CPU(Up,Vp,Wp)

We note that calibrating the CPU cost factors as described in Section 4.6 ensures that

134 5 Self-tuning Cache-conscious Join Algorithms

the resource stalls on the PC (see above) are properly included in the cost factors.
To get the memory access cost function for radix-join, we model its memory ac-

cess pattern as follows.

Wp← nestedloop join(Up,Vp) :

s travs(Up) � rs travs(|Up|, uni,Vp) � s travs(Wp)

=: nl join(Up,Vp,Up)

{Wp}|
2B

p=1← radix join({Up}|
2B

p=1, {Vp}|
2B

p=1, B) :

⊕ |2
B

p=1(nl join(Up,Vp,Wp)).

Figure 5.21 confirms the accuracy of our model (lines) for the number of L1, L2,
and TLB misses on the Origin2000, and for the elapsed time on all architectures.

5.3.2 Overall Radix-Join Performance

Figure 5.22 shows the overall performance of radix-join, i.e., including radix-cluster
of both input relations. For larger clusters, the performance is dominated by the high
CPU costs of radix-join. Only very small clusters with up to 8 tuples are reasonable,
requiring multi-pass radix-clustering in most cases.

5.3.3 Partitioned Hash-Join vs. Radix-Join

Finally, Figure 5.23 compares the overall performance of partitioned hash-join and
radix-join. With the original non-optimized implementation, the optimal performance
of radix-join (circled points on thin lines) is almost the same as the optimal parti-
tioned hash-join performance (circled points on thick lines). With code optimizations
applied, optimal radix-join performance is never better than partitioned hash-join us-
ing the same number of radix-bits.

5.4 Evaluation

In the previous sections, we have demonstrated that performance of large equi-joins
can be strongly improved by combining techniques that optimize memory access and
CPU resource usage. As discussed in Section 3.4.3, hardware trends indicate that
the effects of such optimizations will become even larger in the future, as the memory
access bottleneck will deepen and future CPUs will have even more parallel resources.
In the following, we discuss the more general implications of these findings to the field
of database architecture.

5.4 Evaluation 135

 0 5 10 15 20 25

||L1||

number of radix-bits (B)

104

105

106

107

108

109

1010

64000000 32000000

a) L1 misses (Origin2000)

 0 5 10 15 20 25

||L2||

number of radix-bits (B)

103

104

105

106

107

108

16000000 8000000

b) L2 misses (Origin2000)

 0 5 10 15 20 25

||TLB||

number of radix-bits (B)

102

103

104

105

106

4000000 2000000

c) TLB misses (Origin2000)

 0 5 10 15 20 25

||TLB|| ||L1||

number of radix-bits (B)

101

102

103

104

105

106

1000000 500000

d) Origin2000

 0 5 10 15 20 25

||TLB|| ||L1||

number of radix-bits (B)

250000 125000

e) Sun Ultra

 0 5 10 15 20 25

||TLB|| ||L1||

number of radix-bits (B)

 101

 102

 103

 104

 105

 106

62500 31250 15625

f) Intel PC

(Events are in absolute numbers; times are in milliseconds. Point types indicate cardinalities; diagonal
lines indicate, where the cluster size equals TLB size, L1, or L2 cache size, respectively.)

Figure 5.21: Measured (points) and Modeled (lines) Events (Origin2000)
Performance of Radix-Join

136 5 Self-tuning Cache-conscious Join Algorithms

 0 5 10 15 20 25
number of radix-bits (B)

101

102

103

104

105

106

|U|=|V|=
optimized

64000000
mininum

a) Origin2000

 0 5 10 15 20 25
number of radix-bits (B)

8000000
1 pass

1000000
2 passes

b) Sun Ultra

 0 5 10 15 20 25

number of radix-bits (B)

 101

 102

 103

 104

 105

 106

125000
3 passes

15625
4 passes

c) Intel PC

(Times are in milliseconds. Line types indicate cardinalities, point types indicate number of passes.)

Figure 5.22: Overall Performance of Radix-Join: non-optimized (thin lines) vs. opti-
mized (thick lines) implementation

5.4.1 Implications for Implementation Techniques

Implementation techniques strongly determine how CPU and memory are used in
query processing, and have been the subject of study in the field of main-memory
database engineering [DKO+84], where query processing costs are dominated by CPU
processing. First, we present some rules of thumb, that specifically take into account
the modern hardware optimization aspects, then we explain how they were imple-
mented in Monet:

• use the most efficient algorithm. Even the most efficient implementation will
not make a sub-optimal algorithm perform well. A more subtle issue is tuning
algorithms with the optimal parameters.

• minimize memory copying.Buffer copying should be minimized, as it both
wastes CPU cycles and also causes spurious main-memory access. As function

5.4 Evaluation 137

Non-optmized implementation

 0 5 10 15 20 25
number of radix-bits (B)

101

102

103

104

105

106

64000000 8000000

a) Origin2000

 0 5 10 15 20 25
number of radix-bits (B)

1000000 125000

b) Sun Ultra

 0 5 10 15 20 25

number of radix-bits (B)

 101

 102

 103

 104

 105

 106

15625 phash

c) Intel PC

Optmized implementation

 0 5 10 15 20 25
number of radix-bits (B)

101

102

103

104

105

106

mininum simple

d) Origin2000

 0 5 10 15 20 25
number of radix-bits (B)

1 pass 2 passes

f) Sun Ultra

 0 5 10 15 20 25

number of radix-bits (B)

 101

 102

 103

 104

 105

 106

3 passes 4 passes

f) Intel PC

(Times are in milliseconds. Line types indicate cardinalities, point types indicate number of passes.)

Figure 5.23: Partitioned Hash-Join (thick lines) vs. Radix-Join (thin lines):
non-optimized (top) and optimized (bottom)

138 5 Self-tuning Cache-conscious Join Algorithms

calls copy their parameters on the stack, they are also a source of memory copy-
ing, and should be avoided in the innermost loops that iterate over all tuples. A
typical function call overhead is about 20 CPU cycles.

• allow compiler optimizations.Techniques like memory prefetching, and gener-
ation of parallel EPIC code in the IA-64, rely on compilers to detect indepen-
dence of certain statements. These compiler optimizations work especially well
if the hotspot of the algorithm is one simple loop that is easily analyzable for the
compiler. Again, performing function calls in these loops, force the compiler
to assume the worst (side effects) and prevent optimizations from taking place.
This especially holds in database code, where those function calls cannot be
analyzed at compile time, since the database atomic type interface makes use of
C dereferenced calls on a function-pointer looked up in an ADT table, or C++

late-binding methods.

As an example of correctly tuning algorithms, we discuss the (non-partitioned)
hash-join implementation of Monet that uses a simple bucket-chained hash-table. In
a past implementation, it used a default mean bucket chain length of four [BMK99],
where actually a length of one is optimal (perfect hashing). Also, we had used integer
division (modulo) by a prime-number (the number of hash buckets) to obtain a hash-
bucket number, while integer division costs 40-80 cycles on current CPUs. Later, we
changed the number of hash buckets to be a power of 2 (i.e.,N = 2x), and hence, we
could replace the expensive modulo division by a much cheaper bit-wise AND with
N−1. Such simple tuning made the algorithm more than 4 times faster.

In order to minimize copying, Monet does not do explicit buffer management,
rather it uses virtual memory to leave this to the OS. This avoids having to copy
tuple segments in and out of a buffer manager, whenever the DBMS accesses data.
Monet maps large relations stored in a file into virtual memory and accesses it directly.
Minimizing memory copying also means that pointer swizzling is avoided at all time
by not having hard pointers and value-packing in any data representation.

Functions calls are minimized in Monet by applyinglogarithmic code expan-
sion [Ker89]. Performance-critical pieces of code, like the hash-join implementation,
are replicated in specific functions for the most commonly used types. For example,
the hash-join is separated in an integer-join, a string-join, etc., and an ADT join (that
handles all other types). The specific integer-join processes the table values directly
as C integers, without calling a hash-function for hashing, or calling a comparison
function when comparing two values. The same technique is applied for construct-
ing the result relation, eliminating function calls for inserting the matching values in
the result relation. To make this possible, the type-optimized join implementations
require the result to have a fixed format: a join index containing OIDs (in Monet the
result of joining two BATs is again a BAT, so it has a fixed binary format, and typ-
ical invocations produce a BAT with matching OID pairs). In this way, all function
calls can be removed from an algorithm in the optimized cases. For the non-optimized
cases, the (slower) but equivalent implementation is employed that uses ADT method
calls for manipulating values. The Monet source code is kept small by generating both

5.4 Evaluation 139

the optimized and ADT code instantiations with a macro package from one template
algorithm. We refer to [BK99] for a detailed discussion of this subject.

5.4.2 Implications for Query Processing Algorithms

Our join experiments demonstrated that performance can strongly improve when al-
gorithms that have a random memory access pattern are tuned, in order to ensure that
the randomly accessed region does not exceed the cache size (be it L1, L2, or TLB). In
the case of join, we confirmed results of Shatdal et al. who had proposed a partitioned
hash-join such that each partition joined fits the L2 cache [SKN94], and showed that
the beneficial effect of this algorithm is even stronger on modern hardware. Secondly,
we introduced a new partitioning algorithm calledradix-clusterthat performs multiple
passes over the data to be partitioned but earns back this extra CPU work with much
less memory access costs when the number of partitions gets large.

We believe that similar approaches can be used to optimize algorithms other than
equi-join. For instance, Ronström [Ron98] states, that a B-tree with a block-size equal
to the L2 cache line size as a main-memory search accelerator, now outperforms the
traditionally known-best main-memory T-tree search structure [LC86a]. As another
example, memory cost optimizations can be applied to sorting algorithms (e.g., radix-
cluster followed by quick-sort on the partitions), and might well change the trade-offs
for other well-known main-memory algorithms (e.g., radix-sort has a highly cachable
memory access pattern and is likely to outperform quick-sort).

Main-memory cost models are a prerequisite for tuning the behavior of an al-
gorithm to optimize memory cache usage, as they allow to make good optimization
decisions. Our work shows that such models can be obtained and how to do it. First,
we show with ourcalibration tool how all relevant hardware characteristics can be
retrieved from a computer system automatically. This calibrator does not need any OS
support whatsoever, and should in our opinion be used in modern DBMS query opti-
mizers. Secondly, we present a methodological framework that first characterizes the
memory access pattern of an algorithm to be modeled in a formula that counts certain
hardware events. These computed events are then scored with the calibrated hardware
parameters to obtain a full cost model. This methodology represents an important im-
provement over previous work on main-memory cost models [LN96, WK90], where
performance is characterized on the coarse level of a procedure call with “magical”
cost factors obtained by profiling. We were helped in formulating this methodology
through our usage of hardware event counters present in modern CPUs.

5.4.3 Implications for Disk Resident Systems

We think our findings are not only relevant to main-memory databases engineers. Ver-
tical fragmentation and memory access costs have a strong impact on performance of
database systems at a macro level, including those that manage disk-resident data. Ny-
berg et al. [NBC+94] stated that techniques like software assisted disk-striping have
reduced the I/O bottleneck; i.e., queries that analyze large relations (like in OLAP or
Data Mining) now read their data faster than it can be processed. Hence the main

140 5 Self-tuning Cache-conscious Join Algorithms

performance bottleneck for such applications is shifting from I/O to memory access.
We therefore think that, as the I/O bottleneck decreases and the memory access bottle-
neck increases, main-memory optimization of both data structures and algorithms—
like described in this paper—will become a prerequisite to any DBMS for exploiting
the power of custom hardware.

In Monet, we delegate I/O buffering to the OS by mapping large data files into
virtual memory, hence treat management of disk-resident data as memory with a large
granularity (a memory page is like a large cache line). This is in line with the consid-
eration that disk-resident data is the bottom level of a memory hierarchy that goes up
from the virtual memory, to the main memory through the cache memories up to the
CPU registers (Figure 3.2). Algorithms that are tuned to run well on one level of the
memory, also exhibit good performance on the lower levels.

5.5 Conclusion

We have shown what steps are taken in order to optimize the performance of large
main-memory joins on modern hardware. To achieve better usage of scarce memory
bandwidth, we recommend using vertically fragmented data structures. We refined
partitioned hash-join with a new partitioning algorithm called radix-cluster, that pre-
vents performance becoming dominated by memory latency (avoiding the memory
access bottleneck). Exhaustive equi-join experiments were conducted on modern SGI,
Sun, Intel, and AMD hardware. We formulated detailed analytical cost models that
explain why this algorithm makes optimal use of hierarchical memory systems found
in modern computer hardware and very accurately predict performance on all three
platforms. Further, we showed that once memory access is optimized, CPU resource
usage becomes crucial for the performance. We demonstrated, how CPU resource
usage can be improved by using appropriate implementation techniques. The overall
speedup obtained by our techniques can be almost an order of magnitude. Finally, we
discussed the consequences of our results in a broader context of database architecture,
and made recommendations for future systems.

Chapter 6

Summary and Outlook

Database systems pervade more and more areas of business, research, and everyday
life. With the amount of data stored in databases growing rapidly, performance re-
quirements for database management system increase as well. This thesis analyzes,
why simply using newer and more powerful hardware is not sufficient to solve the
problem. Quantifying the interaction between modern hardware and database soft-
ware enables use to design performance models that make up vital tools for improving
database performance.

6.1 Contributions

Focusing on main-memory database technology, this thesis describes research that
aims at understanding, modeling, and improving database performance.

Hardware Trends and MMDBMS performance

We empirically analyzed how main-memory database software and modern hardware
do interact. During our study, we found that starting with simple but representa-
tive experiments is both necessary and sufficient to identify the essential performance
characteristics. Moreover, hardware counters as present in many contemporary CPUs
have proved to be indispensable tools for tracking down the most performance-crucial
events, such as cache misses, TLB misses, resource stalls, or branch mispredictions.
Our experiments disclosed that memory access has become the primary performance
bottleneck on various hardware platforms ranging from small of-the-shelf PCs to large
high-performance servers. The reason for this can be found in the hardware trends of
the last two decades. While CPU speed has been growing rapidly, memory access
latency has hardly improved. Thus, the performance gap between CPU and memory
speed did widen out. Ongoing and promised hardware development indicates that this
trend will last for the foreseeable future. So far, database technology has not payed
much attention to these trends; especially in cost modeling, main-memory access has
completely been ignored.

142 6 Summary and Outlook

Main-Memory Cost Modeling

Using the knowledge gained during our analysis, we developed precise physical cost
models for core database algorithms. The main goal of these cost models is to accu-
rately predict main-memory access costs. Furthermore, the new models provide two
further innovations compared to traditional database cost models. First, we general-
ized and simplified the process of creating cost functions for arbitrary database oper-
ations. For this purpose, we introduced the concept of data access patterns. Instead of
specifying the often complex cost functions for each algorithm “by hand”, database
software developers only need to describe the algorithms’ data access behavior as sim-
ple combinations of a few basic access patterns. The actual cost functions can then
be derived automatically by applying the rules developed in this thesis. The second
innovation addresses the hardware dependency inherent to physical cost models. The
principle idea is to have a single common cost model instead of individual cost mod-
els for each hardware platform. To achieve this goal, we introduced a novel unified
hardware model for hierarchical memory systems. The hardware model allows an
arbitrary number of hierarchies, such as several levels of CPU cache, main-memory,
and secondary storage. For each level, it stores performance characteristic parameters
such as size, access granularity, access latency, access bandwidth, and associativity.
Thus, we could design a general cost model that is parameterized by the characteristics
as represented in the hardware model. In order to have the cost model automatically
instantiated on a new hardware platform, we developed a calibration tool that mea-
sures the respective parameters without human interaction. The “Calibrator” is freely
available for download from our web site and has become a popular1 tool to assess
computer hardware not only within the database community.

Cache-Conscious Query Processing

Disappointed by the poor performance of standard database technology on supposedly
powerful hardware, but enlightened with the insights gained during our analysis and
modeling exercises, we developed new hardware-conscious algorithms and coding
techniques. Focusing on equi-joins, we introduced radix-algorithms for partitioned
hash-join. The basic idea is to reduce memory access costs by restricting random
access patterns to the smallest cache size, and thus reduce the number of cache misses.
This exercise demonstrates that our cost models — next to being fundamental for
database query optimization — serve two further purposes. First, they help us to
understand the details and thus enable us to design proper algorithms. Second, the
query engine can use the cost functions to tune the algorithms at runtime.

Once memory access is optimized, CPU costs become dominant, mainly as stan-
dard database code is too complex to allow CPUs to efficiently exploit their internal
parallel processing potentials. We presented coding techniques that achieve signifi-
cant performance gains by reducing the number of function calls, branches, and data
dependencies.

1more than 12,000 downloads in 2 years

6.2 Conclusion 143

We have performed extensive experimentation on a range of hardware platforms
that confirmed both the accuracy and the portability of our cost model. Moreover, the
experimental evaluations showed, that combining memory access and CPU optimiza-
tion yields a performance gain of up to an order of magnitude.

6.2 Conclusion

The work presented in this thesis has demonstrated that current main-memory data-
base technology needs to be adapted to achieve optimal performance on modern hard-
ware. Next to data structures, algorithms, and coding techniques, cost models turned
out to be a crucial factor that has not received much attention hitherto in main-memory
context. Our analysis has shown, that understanding and modeling database perfor-
mance in a main-memory dominated scenario is not only possible, but also a fun-
damental requirement for developing and tuning new techniques to improve perfor-
mance.

While the main-memory dominated scenario looks similar to the classical I/O
dominated scenario, but shifted one level up, traditionally successful solutions con-
cerning cost models and algorithms do not work as efficient as one might expect.
Small but significant details, such as the increased and now variable number of mem-
ory hierarchies, limited associativity and fixed size of hardware caches, and the fact
that the cache replacement strategy is not under the control of the DBMS, require
modified or completely new techniques. In this thesis, we explain how to solve these
problems. Moreover, this thesis represents a new departure for database research and
development into taking account of memory, cache, and processor characteristics,
hitherto primarily the concern of optimizing compiler writers and operating system
researchers.

6.3 Open Problems and Future Work

Like almost every research also the work presented here leaves some questions unan-
swered and even discovers new problems. Some of these open issues shall be men-
tioned here.

Portability. Concerning portability of our cost models, we focused on porting the
models to various hardware platforms. Another aspect of portability is whether—
and/or to which extend—our models can be successfully applied to other main-mem-
ory or even disk-based database systems. While the general framework should be
flexible enough to cover the needs of such systems, the main question is whether
it will achieve the same accuracy as we experienced in our experiments with Monet.
Especially the capabilities to cope with various buffer pool implementations and buffer
management strategies in order to accurately predict I/O costs need to be evaluated.

144 6 Summary and Outlook

Basic Access Patterns. In the current set of basic access patterns, the interleaved
multi-cursor pattern plays a kind of special role, being more complex than the other ba-
sic patterns. From an aesthetic point of view, it might be worth to investigate, whether
it could be replaced by a compound pattern made up of a proper combination of sim-
ple sequential and random patterns that reflects the same knowledge about the pattern
performed by algorithms doing partitioning or clustering.

On the other hand, new algorithms or other systems, might need more or differ-
ent basic access patterns. Similar to the interleaved multi-cursor access pattern, there
might be algorithms that allow to deduce more detailed properties of their access pat-
tern(s) than simply being sequential or random. Within the framework we presented,
it is simple to add new basic access patterns together with their respective basic cost
functions.

In the current setup, basic access patterns are limited to the knowledge and proper-
ties that we can derive from the algorithms without knowing anything about the actual
data that eventually is to be processed. A possible way to enrich this knowledge, and
hence to improve the accuracy of the accompanying basic cost functions would be to
combine or parameterize the basic access patterns with some information about the
data distributions. The problem is that the cost functions need to be provided stati-
cally while the actual data distributions are only known at runtime. A solution might
be to use a coarse classification of data distributions and provide cost functions for
each class. At runtime, the actual data distribution is matched with one of the classes
and the respective cost function can be used.

Logical Costs / Volume Estimation. Focusing on physical cost models, we as-
sumed a “perfect oracle” for estimating intermediate result sizes in this thesis. In
practice, any of the numerous techniques for volume, respectively selectivity, estima-
tion proposed in literature (cf., Section 2.2) could pair with our physical cost models
to make up a complete database cost model. Recall, logical costs, and hence their
models, are independent of the physical design of a DBMS. However, especially in
case of Monet, main-memory processing and the decomposed storage model might
offer new opportunities to efficiently build and maintain synopses such as histograms
or samples. These opportunities need to be explored.

An other idea derives from the bulk-processing approach of Monet. As all inter-
mediate results are materialized, it is simple to create synopses directly from the exact
intermediate results with little extra effort. These synopses can then be used for vol-
ume estimation of future queries that contain the same subexpressions. By using the
exact intermediate results to build the synopses, this approach eliminates the problem
that the estimation error grows exponentially throughout the query plan. Two obvious
questions remain open to be answered by future research: (1) How can the synopses in
this scenario efficiently be updated in case the underlying base tables get updated? (2)
How can these synopses be used for volume estimation of queries that do not contain
exactly the same subexpressions, but “similar” ones, e.g., a selection predicate on the
same attribute(s) but with (slightly) different parameters?

Bibliography

[AC99] A. Aboulnaga and S. Chaudhuri. Self-tuning Histograms: Building His-
tograms Without Looking at Data. InProceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages
181–192, Philadephia, PA, USA, June 1999.

[ACM+98] D. August, D. Connors, S. Mahlke, J. Sias, K. Crozier, B. Cheng,
P. Eaton, Q. Olaniran, and W. Hwu. Integrated Predicated and Spec-
ulative Execution in the IMPACT EPIC Architecture. InProceedings of
the International Symposium on Computer Architecture, pages 227–237,
Barcelona, Spain, June 1998.

[ACPS96] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian.
Query Caching and Optimization in Distributed Mediator Systems. In
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD), pages 137–148, Montreal, QC, Canada,
June 1996.

[ADHS01] A. G. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis. Weaving
Relations for Cache Performance. InProceedings of the International
Conference on Very Large Data Bases (VLDB), pages 169–180, Rome,
Italy, September 2001.

[ADHW99] A. G. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a
Modern Processor: Where does time go? InProceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), pages 266–277,
Edinburgh, Scotland, UK, September 1999.

[AGPR99] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join
Synopses for Approximate Query Answering. InProceedings of the
ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 275–286, Philadephia, PA, USA, June 1999.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, Reading, MA, USA, 1995.

[AKK95] F. Andres, F. Kwakkel, and M. L. Kersten. Calibration of a DBMS
Cost Model With the Software Testpilot. InConference on Information

146 Bibliography

Systems and Management of Data, number 1006 in Lecture Notes in
Computer Science, pages 58–74, Bombay, India, November 1995.

[Ant92] G. Antoshenkov. Random Sampling from pseudo-ranked B+ Trees. In
Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 375–382, Vancouver, BC, Canada, August 1992.

[AP92] A. Analyti and S. Pramanik. Fast Search in Main Memory Databases.
In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD), pages 215–224, San Diego, CA, USA,
June 1992.

[ASW87] M. M. Astrahan, M. Schkolnick, and K.-Y. Whang. Approximating the
Number of Unique Values of an Attribute Without Sorting.Information
Systems, 12(1):11–15, 1987.

[AvdBF+92] P. M. G. Apers, C. A. van den Berg, J. Flokstra, P. W. P. J. Grefen, M. L.
Kersten, and A. N. Wilschut. PRISMA/DB: A Parallel Main Memory
Relational DBMS. IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), 4(6):541–554, December 1992.

[Bat79] D. S. Batory. On Searching Transposed Files.ACM Transactions on
Database Systems (TODS), 4(4):531–544, December 1979.

[BBC+98] P. A. Bernstein, M. L. Brodie, S. Ceri, D. J. DeWitt, M. J. Franklin,
H. Garcia-Molina, J. Gray, G. Held, J. M. Hellerstein, H. V. Jagadish,
M. Lesk, D. Maier, J. F. Naughton, H. Pirahesh, M. Stonebraker, and
J. D. Ullman. The Asilomar Report on Database Research.ACM SIG-
MOD Record, 27(4):74–80, December 1998.

[BBG+98] J. Baulier, P. Bohannon, S. Gogate, S. Joshi, C. Gupta, A. Khivesera,
H. F. Korth, P. McIlroy, J. Miller, P. P. S. Narayan, M. Nemeth, R. Ras-
togi, A. Silberschatz, and S. Sudarshan. DataBlitz: A High Performance
Main-Memory Storage Manager. InProceedings of the International
Conference on Very Large Data Bases (VLDB), page 701, New York,
NY, USA, August 1998.

[BBG+99] J. Baulier, P. Bohannon, S. Gogate, C. Gupta, S. Haldar, S. Joshi,
A. Khivesera, H. F. Korth, P. McIlroy, J. Miller, P. P. S. Narayan,
M. Nemeth, R. Rastogi, S. Seshadri, A. Silberschatz, S. Sudarshan,
M. Wilder, and C. Wei. DataBlitz Storage Manager: Main Memory
Database Performance for Critical Applications. InProceedings of the
ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 519–520, Philadephia, PA, USA, June 1999.

[BF89] H. Borall and P. Faudemay, editors.Database Machines, Sixth Interna-
tional Workshop, IWDM ’89, number 368 in Lecture Notes in Computer
Science, Deauville, France, June 1989. Springer.

147

[BGB98] L. A. Barroso, K. Gharachorloo, and E. D. Bugnion. Memory System
Characterization of Commercial Workloads. InProceedings of the Inter-
national Symposium on Computer Architecture, pages 3–14, Barcelona,
Spain, June 1998.

[BHK+86] A. Brown, T. Hirata, A. Koehler, K. Vishwanath, J. Ng, M. Pechulis,
M. Sikes, D. Singleton, and J. Veazey. Data Base Management
for HP Precision Architecture Computers.Hewlett-Packard Journal,
37(12):33–48, December 1986.

[BK95] P. A. Boncz and M. L. Kersten. Monet: An Impressionist Sketch of
an Advanced Database System. InProceedings Basque International
Workshop on Information Technology, San Sebastian, Spain, July 1995.

[BK99] P. A. Boncz and M. L. Kersten. MIL Primitives for Querying a Frag-
mented World.The VLDB Journal, 8(2):101–119, October 1999.

[BKS99] B. Blohsfeld, D. Korus, and B. Seeger. A Comparison of Selectivity
Estimators for Range Queries on Metric Attributes. InProceedings of
the ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 239–250, Philadephia, PA, USA, June 1999.

[BMK99] P. A. Boncz, S. Manegold, and M. L. Kersten. Database Architecture
Optimized for the New Bottleneck: Memory Access. InProceedings of
the International Conference on Very Large Data Bases (VLDB), pages
54–65, Edinburgh, Scotland, UK, September 1999.

[Bon02] P. A. Boncz. Monet: A Next-Generation DBMS Kernel For Query-
Intensive Applications. PhD thesis, Universiteit van Amsterdam, Ams-
terdam, The Netherlands, May 2002.

[BRK98] P. A. Boncz, T. R̈uhl, and F. Kwakkel. The Drill Down Benchmark. In
Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 628–632, New York, NY, USA, August 1998.

[BZ98] R. Berrendorf and H. Ziegler. PCL - The Performance Counter Library.
Technical Report FZJ-ZAM-IB-9816, ZAM, Forschungzentrum Jülich,
Germany, October 1998.

[CD85] H.-T. Chou and D. J. DeWitt. An Evaluation of Buffer Management
Strategies for Relational Database Systems. InProceedings of the Inter-
national Conference on Very Large Data Bases (VLDB), pages 127–141,
Stockholm, Sweden, August 1985.

[CDH+99] J. Clear, D. Dunn, B. Harvey, M. Heytens, P. Lohman, A. Mehta,
M. Melton, H. Richardson, L. Rohrberg, A. Savasere, R. Wehrmeister,
and M. Xu. NonStopSQL/MX primitives for knowledge discovery. In
Proceedings of the International Conference on Knowledge Discovery

148 Bibliography

and Data Mining (KDD), pages 425–429, San Diego, CA, USA, August
1999.

[CGRS00] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim. Approxi-
mate Query Processing Using Wavelets. InProceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), pages 111–122,
Cairo, Egypt, September 2000.

[Cha98] S. Chaudhuri. An Overview of Query Optimization in Relational Sys-
tems. InProceedings of the ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems (PODS), pages 34–43, Seattle,
WA, USA, June 1998.

[Chr83] S. Christodoulakis. Estimating Block Transfers and Join Sizes. InPro-
ceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD), pages 40–50, San Jose, CA, USA, May 1983.

[Chr84] S. Christodoulakis. Implications of Certain Assumptions in Database
Performance Evaluation. ACM Transactions on Database Systems
(TODS), 9(2):163–186, June 1984.

[CK85] G. P. Copeland and S. Khoshafian. A Decomposition Storage Model. In
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD), pages 268–279, Austin, TX, USA, May
1985.

[CM95] S. Cluet and G. Moerkotte. On the Complexity of Generating Optimal
Left-Deep Processing Trees with Cross Products. InProceedings of
the International Conference on Database Theory (ICDT), pages 54–
67, Prague, Czechia, January 1995.

[CMN98] S. Chaudhuri, R. Motwani, and V. R. Narasayya. Sampling for His-
togram Construction: How much is enough? InProceedings of the
ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 436–447, Seattle, WA, USA, June 1998.

[CMN99] S. Chaudhuri, R. Motwani, and V. R. Narasayya. On Random Sampling
over Joins. InProceedings of the ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD), pages 263–274, Philadephia,
PA, USA, June 1999.

[Com98] Compaq Corp. Whitepaper.Infocharger, January 1998.

[CR94] C. M. Chen and N. Roussopoulos. Adaptive Selectivity Estimation Us-
ing Query Feedback. InProceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 161–172, Min-
neapolis, MN, USA, May 1994.

149

[CS89] I. R. Casas and K. C. Sevcik. A Buffer Management Model For Use
In Predicting Overall Database System Performance. InProceedings of
the IEEE International Conference on Data Engineering (ICDE), pages
463–469, Los Angeles, CA, USA, February 1989.

[DKO+84] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. Stonebraker, and
D. A. Wood. Implementation Techniques for Main Memory Database
Systems. InProceedings of the ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), pages 1–8, Boston, MA,
USA, June 1984.

[DKS92] W. Du, R. Krishnamurthy, and M. C. Shan. Query Optimization in Het-
erogeneous DBMS. InProceedings of the International Conference
on Very Large Data Bases (VLDB), pages 277–291, Vancouver, BC,
Canada, August 1992.

[DYC95] A. Dan, P. S. Yu, and J.-Y. Chung. Characterization of Database Access
Pattern for Analytic Prediction of Buffer Hit Probability. The VLDB
Journal, 4(1):127–154, January 1995.

[Eic87] M. H. Eich. A Classification and Comparison of Main Memory
Database Recovery Techniques. InProceedings of the IEEE Interna-
tional Conference on Data Engineering (ICDE), pages 332–339, Los
Angeles, CA, USA, February 1987.

[Eic89] M. H. Eich. Main Memory Database Research Directions. InDatabase
Machines. 6th International Workshop, pages 251–268, Deauville,
France, June 1989.

[EN94] E. Elmasri and S. B. Navathe.Fundamentals of Database Sytems. Ben-
jamin/Cummings, Redwood City, CA, USA, 2nd edition, 1994.

[FM85] P. Flajolet and G. N. Martin. Probabilistic Counting Algorithms for
Data Base Applications.Journal of Computer and System Sciences,
31(2):182–209, October 1985.

[FR97] G. Fahl and T. Risch. Query Processing Over Object Views of Relational
Data.The VLDB Journal, 6(4):261–281, November 1997.

[GFF97] G. Gardarin, B. Finance, and P. Fankhauser. Federating Object-Oriented
and Relational Databases: The IRO-DB Experience. InProceedings of
the IFCIS International Conference on Cooperative Information Sys-
tems (CoopIS), pages 2–13, Kiawah Island, SC, USA, June 1997.

[GG82] E. Gelenbe and D. Gardy. The Size of Projections of Relations Sat-
isfying a Functional Dependency. InProceedings of the International
Conference on Very Large Data Bases (VLDB), pages 325–333, Mexico
City, Mexico, September 1982.

150 Bibliography

[GGMS96] S. Ganguly, P. B. Gibbons, Y. Matias, and A. Silberschatz. Bifocal
Sampling for Skew-Resistant Join Size Estimation. InProceedings of
the ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 271–281, Montreal, QC, Canada, June 1996.

[GHK92] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query Optimization
for Parallel Execution. InProceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), pages 9–18, San
Diego, CA, USA, June 1992.

[GLSW93] P. Gassner, G. M. Lohman, K. B. Schiefer, and Y. Wang. Query Op-
timization in the IBM DB2 Family. IEEE Data Engineering Bulletin,
16(4):4–18, December 1993.

[GM98] P. B. Gibbons and Y. Matias. New Sampling-Based Summary Statis-
tics for Improving Approximate Query Answers. InProceedings of the
ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 331–342, Seattle, WA, USA, June 1998.

[GM99] P. B. Gibbons and Y. Matias. Synopsis Data Structures for Massive Data
Sets. InProceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 909–910, Baltimore, MD, USA, January 1999.

[GMP97] P. B. Gibbons, Y. Matias, and V. Poosala. Fast Incremental Mainte-
nance of Approximate Histograms. InProceedings of the International
Conference on Very Large Data Bases (VLDB), pages 466–475, Athens,
Greece, September 1997.

[GMS92] H. Garcia-Molina and K. Salem. Main Memory Database Systems: An
Overview. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 4(6):509–516, December 1992.

[GMUW02] H. Garcia-Molina, J. D. Ullman, and J. Widom.Database Systems: The
Complete Book. Prentice Hall, Englewood Cliffs, NJ, USA, 2002.

[Gra93] G. Graefe. Query Evaluation Techniques for Large Databases.ACM
Computing Surveys, 25(2):73–170, June 1993.

[GST96] G. Gardarin, F. Sha, and Z. H. Tang. Calibrating the Query Optimizer
Cost Model of IRO-DB, and Object-Oriented Federated Database Sys-
tem. InProceedings of the International Conference on Very Large Data
Bases (VLDB), pages 378–389, Bombay, India, September 1996.

[HNSS96] P. J. Haas, J. F. Naughton, S. Seshadri, and A. N. Swami. Selectivity
and Cost Estimation for Joins Based on Random Sampling.Journal of
Computer and System Sciences, 52(3):550–569, June 1996.

[HS89] M. D. Hill and A. J. Smith. Evaluating Associativity in CPU Caches.
IEEE Transactions on Computers (TOC), 38(12):1612–1630, December
1989.

151

[HS92] P. J. Haas and A. N. Swami. Sequential Sampling Procedures for Query
Size Estimation. InProceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 341–350, San
Diego, CA, USA, June 1992.

[HS95] P. J. Haas and A. N. Swami. Sampling-Based Selectivity Estimation
for Joins using Augmented Frequent Value Statistics. InProceedings of
the IEEE International Conference on Data Engineering (ICDE), pages
522–531, Taipei, Taiwan, March 1995.

[IC91] Y. E. Ioannidis and S. Christodoulakis. On the Propagation of Errors in
the Size of Join Results. InProceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), pages 268–277,
Denver, CO, USA, May 1991.

[IC93] Y. E. Ioannidis and S. Christodoulakis. Optimal Histograms for Lim-
iting Worst-Case Error Propagation in the Size of Join Results.ACM
Transactions on Database Systems (TODS), 18(4):709–748, December
1993.

[IK84] T. Ibaraki and T. Kameda. On the Optimal Nesting for Computation
N-Relational Joins.ACM Transactions on Database Systems (TODS),
9(3):482–502, September 1984.

[Ioa93] Y. E. Ioannidis. Universality of serial histograms. InProceedings of
the International Conference on Very Large Data Bases (VLDB), pages
256–267, Dublin, Ireland, August 1993.

[IP95] Y. E. Ioannidis and V. Poosala. Balancing Histogram Optimality and
Practicality for Query Result Size Estimation. InProceedings of the
ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 233–244, San Jose, CA, USA, May 1995.

[IP99] Y. E. Ioannidis and V. Poosala. Histogram-Based Approximation of Set-
Valued Query-Answers. InProceedings of the International Conference
on Very Large Data Bases (VLDB), pages 174–185, Edinburgh, Scot-
land, UK, September 1999.

[JKM+98] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik,
and T. Suel. Optimal Histograms with Quality Guarantees. InProceed-
ings of the International Conference on Very Large Data Bases (VLDB),
pages 275–286, New York, NY, USA, August 1998.

[JLR+94] H. Jagadish, D. Lieuwen, R. Rastogi, A. Silberschatz, and S. Sudarshan.
Daĺı: A High Performance Main Memory Storage Manager. InProceed-
ings of the International Conference on Very Large Data Bases (VLDB),
pages 48–59, Santiago, Chile, September 1994.

152 Bibliography

[JSS93] H. V. Jagadish, A. Silberschatz, and S. Sudarshan. Recovering from
Main-Memory Lapses. InProceedings of the International Conference
on Very Large Data Bases (VLDB), pages 391–404, Dublin, Ireland,
August 1993.

[Ker89] M. L. Kersten. Using Logarithmic Code-Expansion to Speedup Index
Access and Maintenance. InProceedings of the International Confer-
ence on Foundation on Data Organization and Algorithms (FODO),
pages 228–232, Paris, France, October 1989.

[KK85] N. Kamel and R. King. A Model of Data Distribution Based on Texture
Analysis. InProceedings of the ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD), pages 319–325, Austin, TX,
USA, May 1985.

[KK93] M. L. Kersten and F. Kwakkel. Design and implementation of a DBMS
Performance Assessment Tool. InProceedings of the International
Workshop on Database and Expert Systems Application (DEXA), pages
265–276, Prague, Czechia, September 1993.

[Knu68] D. E. Knuth. The Art of Computer Programming, volume 1. Addison-
Wesley, Reading, MA, USA, 1968.

[Koo80] R. P. Kooi. The Optimization of Queries in Relational Databases.
PhD thesis, Case Western Reserver University, Cleveland, OH, USA,
September 1980.

[KPH+98] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and W. E. Baker.
Performance Characterization of a quad Pentium Pro SMP using OLTP
workloads. InProceedings of the International Symposium on Computer
Architecture, pages 15–26, Barcelona, Spain, June 1998.

[KS91] H. Korth and A. Silberschatz.Database Systems Concepts. McGraw-
Hill, Inc., New York, San Francisco, Washington, DC, USA, 1991.

[KSHK97] M. L. Kersten, A. P. J. M. Siebes, M. Holsheimer, and F. Kwakkel. Re-
search and Business Challenges in Data Mining Technology. InPro-
ceedings Datenbanken in Büro, Technik und Wissenschaft, pages 1–16,
Ulm, Germany, March 1997.

[KW99] A. C. König and Gerhard Weikum. Combining Histograms and Para-
metric Curve Fitting for Feedback-Driven Query Result-size Estima-
tion. InProceedings of the International Conference on Very Large Data
Bases (VLDB), pages 423–434, Edinburgh, Scotland, UK, September
1999.

[KW00] A. C. König and G. Weikum. Auto-Tuned Spline Synopses for Database
Statistics Management. InProceedings of the International Conference
on Management of Data (COMAD), Pune, India, December 2000.

153

[LC86a] T. J. Lehman and M. J. Carey. A Study of Index Structures for Main
Memory Database Management Systems. InProceedings of the Inter-
national Conference on Very Large Data Bases (VLDB), pages 294–303,
Kyoto, Japan, August 1986.

[LC86b] T. J. Lehman and M. J. Carey. Query Processing in Main Memory
Database Systems. InProceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 239–250, Wash-
ington, DC, USA, May 1986.

[LKC99] J.-H. Lee, D.-H. Kim, and C.-W. Chung. Multi-dimensional Selectivity
Estimation Using Compressed Histogram Information. InProceedings
of the ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 205–214, Philadephia, PA, USA, June 1999.

[LN96] S. Listgarten and M.-A. Neimat. Modelling Costs for a MM-DBMS. In
Proceedings of the International Workshop on Real-Time Databases, Is-
sues and Applications (RTDB), pages 72–78, Newport Beach, CA, USA,
March 1996.

[LN97] S. Listgarten and M.-A. Neimat. Cost Model Development for a Main
Memory Database System. In A. Bastavros, K.-J. Lin, and S. H. Son,
editors,Real-Time Database Systems: Issues and Applications, chap-
ter 10, pages 139–162. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1997.

[LNS90] R. J. Lipton, J. F. Naughton, and D. A. Schneider. Practical Selec-
tivity Estimation through Adaptive Sampling. InProceedings of the
ACM SIGMOD International Conference on Management of Data (SIG-
MOD), pages 1–11, Atlantic City, NJ, USA, May 1990.

[LS95] Y. Ling and W. Sun. An Evaluation of Sampling-Based Size Estima-
tion Techniques for Selections in Database Systems. InProceedings of
the IEEE International Conference on Data Engineering (ICDE), pages
532–539, Taipei, Taiwan, March 1995.

[LST91] H. Lu, M.-C. Shan, and K.-L. Tan. Optimization of Multi-Way Join
Queries for Parallel Execution. InProceedings of the International Con-
ference on Very Large Data Bases (VLDB), pages 549–560, Barcelona,
Spain, September 1991.

[LTS90] H. Lu, K.-L. Tan, and M.-C. Shan. Hash-Based Join Algorithms for
Multiprocessor Computers. InProceedings of the International Con-
ference on Very Large Data Bases (VLDB), pages 198–209, Brisbane,
Australia, August 1990.

[LVZ93] R. S. G. Lanzelotte, P. Valduriez, and M. Zaı̈t. On the Effectiveness
of Optimization Search Strategies for Parallel Execution Spaces. In

154 Bibliography

Proceedings of the International Conference on Very Large Data Bases
(VLDB), pages 493–504, Dublin, Ireland, August 1993.

[MBK00a] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing Database Ar-
chitecture for the New Bottleneck: Memory Access.The VLDB Journal,
9(3):231–246, December 2000.

[MBK00b] S. Manegold, P. A. Boncz, and M. L. Kersten. What happens during a
Join? — Dissecting CPU and Memory Optimization Effects. InPro-
ceedings of the International Conference on Very Large Data Bases
(VLDB), pages 339–350, Cairo, Egypt, September 2000.

[MBK02] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing Main-
Memory Join On Modern Hardware.IEEE Transactions on Knowledge
and Data Engineering (TKDE), 14(4):709–730, July 2002.

[MCS88] M. V. Mannino, P. Chu, and T. Sager. Query Evaluation Techniques for
Large Databases.ACM Computing Surveys, 20(3):192–221, September
1988.

[MD88] M. Muralikrishna and D. J. DeWitt. Equi-Depth Histograms for Estimat-
ing Selectivity Factors for Multi-Dimensional Queries. InProceedings
of the ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 28–36, Chicago, IL, USA, June 1988.

[MK88] B. Muthuswamy and L. Kerschberg. A Detailed Database Statistics
Model for Realtional Query Optimization. InACM Annual Conference,
pages 439–448, Denver, CO, USA, October 1988.

[MKW +98] S. McKee, R. Klenke, K. Wright, W. Wulf, M. Salinas, J. Aylor, and
A. Batson. Smarter Memory: Improving Bandwidth for Streamed Ref-
erences.IEEE Computer, 31(7):54–63, July 1998.

[ML86] L. F. Mackert and G. M. Lohman. R* Optimizer Validation and Per-
formance Evaluation for Loc Queries. InProceedings of the ACM SIG-
MOD International Conference on Management of Data (SIGMOD),
pages 84–95, Washington, DC, USA, May 1986.

[ML89] L. F. Mackert and G. M. Lohman. Index Scans Using a Finite LRU
Buffer: A Validated I/O Model. ACM Trans. on Database Sys.,
14(3):401–424, March 1989.

[MO79] A. W. Marshall and I. Olkin.Inequalities: Theorey of Majorization and
Its Applications. Academic Press, New York, 1979.

[Moo65] G. E. Moore. Cramming More Components onto Integrated Circuits.
Electronics, 38(8):114–117, April 1965.

155

[Mow94] T. C. Mowry. Tolerating Latency Through Software-Controlled Data
Prefetching. PhD thesis, Stanford University, Computer Science De-
partment, Stanford, CA, USA, March 1994.

[MPK00] S. Manegold, A. Pellenkoft, and M. L. Kersten. A Multi-Query Op-
timizer for Monet. InProceedings of the British National Conference
on Databases (BNCOD), number 1832 in Lecture Notes in Computer
Science, pages 36–51, Exeter, United Kingdom, July 2000.

[MVW98] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-Based Histograms for
Selectivity Estimation. InProceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), pages 448–459,
Seattle, WA, USA, June 1998.

[NBC+94] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet. AlphaSort:
A RISC Machine Sort. InProceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), pages 233–242,
Minneapolis, MN, USA, May 1994.

[OR86] F. Olken and B. Rotem. Simple Random Sampling from Relational
Databases. InProceedings of the International Conference on Very
Large Data Bases (VLDB), pages 160–169, Kyoto, Japan, August 1986.

[Ozk86] E. Ozkarahan.Database machines and database management. Prentice
Hall, Englewood Cliffs, NJ, USA, 1986.

[PAC+97] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. A Case for Intelligent RAM.
IEEE Micro, 17(2):34–44, March 1997.

[Pel97] A. Pellenkoft.Probabilistic and Transformation based Query Optimiza-
tion. PhD thesis, Universiteit van Amsterdam, Amsterdam, The Nether-
lands, November 1997.

[PGI99] V. Poosala, V. Ganti, and Y. E. Ioannidis. Approximate Query Answer-
ing using Histograms.IEEE Data Engineering Bulletin, 22(4):5–14,
December 1999.

[PIHS96] V. Poosala, Y. E. Ioannidis, P. J. Haas, and E. J. Shekita. Improved His-
tograms for Selectivity Estimation of Range Predicates. InProceedings
of the ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 294–305, Montreal, QC, Canada, June 1996.

[PKK+98] J. H. Park, Y. S. Kwon, K. H. Kim, S. Lee, B. D. Park, and S. K.
Cha. Xmas: An Extensible Main-Memory Storage System for High-
Performance Applications. InProceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD), pages 578–
580, Seattle, WA, USA, June 1998.

156 Bibliography

[Poo97] V. Poosala.Histogram-based Estimation Techniques in Database Sys-
tems. PhD thesis, University of Wisconsin Madison, Madison, WI,
USA, February 1997.

[PSC84] G. Piatetsky-Shapiro and C. Connell. Accurate Estimation of the Num-
ber of Tuples Satisfying a Condition. InProceedings of the ACM SIG-
MOD International Conference on Management of Data (SIGMOD),
pages 256–276, Boston, MA, USA, June 1984.

[Ram96] Rambus Technologies, Inc.Direct Rambus Technology Disclosure,
1996. http://www.rambus.com/docs/drtechov.pdf.

[RBP+98] R. Rastogi, P. Bohannon, J. Parker, A. Silberschatz, S. Seshadri, and
S. Sudarshan. Distributed Multi-Level Recovery in Main-Memory
Databases.Distributed and Parallel Databases, 6(1):41–71, January
1998.

[Ron98] M. Ronstr̈om. Design and Modeling of a Parallel Data Server for Tele-
com Applications. PhD thesis, Link̈oping University, Link̈oping, Swe-
den, 1998.

[RR99] J. Rao and K. A. Ross. Cache Conscious Indexing for Decision-Support
in Main Memory. InProceedings of the International Conference on
Very Large Data Bases (VLDB), pages 78–89, Edinburgh, Scotland, UK,
September 1999.

[RR00] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious in Main
Memory. InProceedings of the ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD), pages 475–486, Dallas, TX,
USA, May 2000.

[SAC+79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access Path Selection in a Relational Database Management
System. InProceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), pages 23–34, Boston, MA, USA,
May 1979.

[Sac87] G. M. Sacco. Index Access with a Finite Buffer. In Proceedings of
the International Conference on Very Large Data Bases (VLDB), pages
301–309, Brighton, England, UK, September 1987.

[SDNR96] A. Shukla, P. Deshpande, J. F. Naughton, and K. Ramaswamy. Storage
Estimation for Multidimensional Aggregates in the Presence of Hierar-
chies. InProceedings of the International Conference on Very Large
Data Bases (VLDB), pages 522–531, Bombay, India, September 1996.

[SE93] J. Srivastava and G. Elsesser. Optimizing Multi-Join Queries in Parallel
Relational Databases. InProceedings of the International Conference

157

on Parallel and Distributed Information Systems (PDIS), pages 84–92,
San Diego, CA, USA, January 1993.

[Sem97] Sematech.National Roadmap For Semiconductor Technology: Technol-
ogy Needs, 1997. http://www.itrs.net/ntrs/publntrs.nsf.

[SF96] M. Spiliopoulou and J.-C. Freytag. Modelling Resource Utilization in
Pipelined Query Execution. InProceedings of the European Confer-
ence on Parallel Processing (EuroPar), pages 872–880, Lyon, France,
August 1996.

[SHV96] M. Spiliopoulou, M. Hatzopoulos, and C. Vassilakis. A Cost Model
for the Estimation of Query Execution Time in a Parallel Environment
Supporting Pipeline.Computers and Artificial Intelligence, 14(1):341–
368, 1996.

[Sil97] Silicon Graphics, Inc., Mountain View, CA.Performance Tuning and
Optimization for Origin2000 and Onyx2, January 1997.

[SKN94] A. Shatdal, C. Kant, and J. Naughton. Cache Conscious Algorithms for
Relational Query Processing. InProceedings of the International Con-
ference on Very Large Data Bases (VLDB), pages 510–512, Santiago,
Chile, September 1994.

[SLD97] SLDRAM Inc. SyncLink DRAM Whitepaper, 1997. http://www.sldram.
com/Documents/SLDRAMwhite970910.pdf.

[SLRD93] W. Sun, Y. Ling, N. Rishe, and Y. Deng. An Instant and Accurate Size
Estimation Method for Joins and Selection in a Retrieval-Intensive En-
vironment. InProceedings of the ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), pages 79–88, Washington,
DC, USA, May 1993.

[SM97] W. Scheufele and G. Moerkotte. On the Complexity of Generat-
ing Optimal Plans with Cross Products. InProceedings of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 238–248, Tucson, AZ, USA, May 1997.

[SN92] S. Seshadri and J. F. Naughton. Sampling Issues in Parallel Database
Systems. InProceedings of the International Conference on Extending
Database Technology (EDBT), number 580 in Lecture Notes in Com-
puter Science, pages 328–343, Vienna, Austria, March 1992.

[SS86] G. M. Sacco and M. Schkolnick. Buffer Management in Relational
Database Systems.ACM Transactions on Database Systems (TODS),
11(4):473–498, December 1986.

158 Bibliography

[Sti30] J. Stirling. Methodus differentialis, sive tractatus de summation et in-
terpolation serierum infinitarium. London, 1730. English translation by
J. Holliday, The Differential Method: A Treatise of the Summation and
Interpolation of Infinite Series. 1749.

[Su88] S. Su. Database Computers, principles, architectures& techniques.
McGraw-Hill, Inc., New York, San Francisco, Washington, DC, USA,
1988.

[Syb96] Sybase Corp. Whitepaper.Adaptive Server IQ, July 1996.

[SYT93] E. J. Shekita, H. C. Young, and K.-L. Tan. Multi-Join Optimization for
Symmetric Multiprocessors. InProceedings of the International Con-
ference on Very Large Data Bases (VLDB), pages 479–492, Dublin, Ire-
land, August 1993.

[Tea99] Times-Ten Team. In-Memory Data Management for Consumer Transac-
tions The Times-Ten Approach. InProceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages
528–529, Philadephia, PA, USA, June 1999.

[TLPZT97] P. Trancoso, J. L. Larriba-Pey, Z. Zhang, and J. Torellas. The Memory
Performance of DSS Commericial Workloads in Shared-Memory Mul-
tiprocessors. InProceedings of the International Symposium on High
Performance Computer Architecture (HPCA), pages 250–260, San An-
tonio, TX, USA, January 1997.

[Val87] P. Valduriez. Join Indices.ACM Transactions on Database Systems
(TODS), 12(2):218–246, June 1987.

[VW99] J. S. Vitter and M. Wang. Approximate Computation of Multidimen-
sional Aggregates of Sparse Data Using Wavelets. InProceedings of
the ACM SIGMOD International Conference on Management of Data
(SIGMOD), pages 193–204, Philadephia, PA, USA, June 1999.

[Waa00] F. Waas.Principles of Probabilistic Query Optimization. PhD thesis,
Universiteit van Amsterdam, Amsterdam, The Netherlands, November
2000.

[Wil91] A. Wilschut. Parallel Query Execution in a Main-Memory Database
System. PhD thesis, Universiteit Twente, Enschede, The Netherlands,
April 1991.

[WK90] K.-Y. Whang and R. Krishnamurthy. Query Optimization in a Memory-
Resident Domain Relational Calculus Database System.ACM Transac-
tions on Database Systems (TODS), 15(1):67–95, March 1990.

[Yea96] K. Yeager. The MIPS R10000 superscalar microprocessor.IEEE Micro,
16(2):28–40, April 1996.

159

[ZL94] Q. Zhu and P.-Å. Larson. A Query Sampling Method of Estimating
Local Cost Parameters in a Multidatabase System. InProceedings of
the IEEE International Conference on Data Engineering (ICDE), pages
144–153, Houston, TX, USA, February 1994.

[ZL96] Q. Zhu and P.-Å. Larson. Developing Regression Cost Models for Mul-
tidatabase Systems. InProceedings of the International Conference on
Parallel and Distributed Information Systems (PDIS), pages 220–231,
Miami Beach, FL, USA, December 1996.

[ZL98] Q. Zhu and P.-Å. Larson. Solving Local Cost Estimation Problem for
Global Query Optimization in Multidatabase Systems.Distributed and
Parallel Databases, 6(4):373–421, October 1998.

[ZLTI96] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Performance Anal-
ysis Using the MIPS R10000 Performance Counters. InProc. of the
Supercomputing ’96 Conf., Pittsburgh, PA, USA, November 1996.

[ZZBS93] M. Ziane, M. Zait, and P. Borla-Salamet. Parallel Query Processing
in DBS3. In Proceedings of the International Conference on Paral-
lel and Distributed Information Systems (PDIS), pages 103–109, San
Diego, CA, USA, January 1993.

160

Curriculum Vitae

Education

PhD in Computer Science (expected): 1997–2002
University of Amsterdam (The Netherlands)

MSc in Computer Science: 1988–1994
Technical University Clausthal (Germany)

High School: 1979–1988
Friedrich-Wilhelm-Schule & Oberstufengymnasium Eschwege (Germany)

Professional Experience

Researcher with CWI Amsterdam (The Netherlands): 1997 – present
I hold a permanent research position at the Centre for Mathematics and Com-
puter Science (CWI) in the database group of Prof. Martin L. Kersten. My
research includes database cost models, query optimization, and database algo-
rithms, mainly focusing on main-memory database systems.

Researcher with Humboldt-University Berlin (Germany): 1995 – 1997
I worked in the database group of Prof. Johann-Christoph Freytag on query
evaluation and optimization in parallel database system.

Compulsory Military Service with German Air Force: 1994 – 1995
I spent my compulsory military service with a computing center of the German
Air Force. My main task was system administration of two Siemens mainframes
(H90 and 7.580i) running BS 2000.

162 Curriculum Vitae

Publications

Journals

[1] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing Main-Memory Join
On Modern Hardware.IEEE Transactions on Knowledge and Data Engineering
(TKDE), 14(4):709–730, July 2002.

[2] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing Database Architecture
for the New Bottleneck: Memory Access.The VLDB Journal, 9(3):231–246,
December 2000.

Conferences and Workshops

[1] A. R. Schmidt, S. Manegold, and M. L. Kersten. Integrated Querying of XML
Data in RDBMSs. InProceedings of the ACM Symposium on Applied Computing
(SAC), Melbourne, FL, USA, March 2003. Accepted for publication.

[2] S. Manegold, P. A. Boncz, and M. L. Kersten. Generic Database Cost Models for
Hierarchical Memory Systems. InProceedings of the International Conference
on Very Large Data Bases (VLDB), pages 191–202, Hong Kong, China, August
2002.

[3] M. L. Kersten, S. Manegold, P. A. Boncz, and N. J. Nes. Macro- and Micro-
Parallelism in a DBMS. InProceedings of the European Conference on Paral-
lel Processing (EuroPar), number 2150 in Lecture Notes in Computer Science,
pages 6–15, Manchester, UK, August 2001.

[4] S. Manegold, P. A. Boncz, and M. L. Kersten. What happens during a Join?
— Dissecting CPU and Memory Optimization Effects. InProceedings of the
International Conference on Very Large Data Bases (VLDB), pages 339–350,
Cairo, Egypt, September 2000.

[5] S. Manegold, A. Pellenkoft, and M. L. Kersten. A Multi-Query Optimizer for
Monet. InProceedings of the British National Conference on Databases (BN-
COD), number 1832 in Lecture Notes in Computer Science, pages 36–51, Ex-
eter, United Kingdom, July 2000.

[6] P. A. Boncz, S. Manegold, and M. L. Kersten. Database Architecture Optimized
for the New Bottleneck: Memory Access. InProceedings of the International
Conference on Very Large Data Bases (VLDB), pages 54–65, Edinburgh, Scot-
land, UK, September 1999.

[7] S. Manegold and F. Waas. Integrating I/O processing and Transparent Paral-
lelism — Toward Comprehensive Query Execution in Parallel Database Sys-
tems. In A. Dogaç, M. T.Özsu, andÖ. Ulusoy, editors,Current Trends in
Data Management Technology, chapter 8, pages 130–152. Idea Group Publish-
ing, Hershey, PA, USA, January 1999.

Publications 163

[8] S. Manegold, F. Waas, and M. L. Kersten. Transparent Parallelism in Query
Execution. InProceedings of the International Conference on Management of
Data (COMAD), pages 217–234, Hyderabad, India, December 1998.

[9] S. Manegold and J. K. Obermaier. Efficient Resource Utilization in Shared-
Everything Environments. InProceedings of the International Workshop on Is-
sues and Applications of Database Technology (IADT), pages 209–216, Berlin,
Germany, July 1998.

[10] S. Manegold and F. Waas. Thinking Big in a Small World — Efficient Query
Execution on Small-scale SMPs. In Jonathan Schaeffer, editor,Proceedings of
the International Symposium on High Performance Computing Systems and Ap-
plications (HPCS), chapter 14, pages 133–146. Kluwer Academic Publishers,
Edmonton, AL, Canada, May 1998.

[11] S. Manegold, F. Waas, and D. Gudlat. In Quest of the Bottleneck - Monitoring
Parallel Database Systems. InProceedings of the European PVM-MPI Users’
Group Meeting, number 1332 in Lecture Notes in Computer Science, pages 277–
284, Cracow, Poland, November 1997.

[12] S. Manegold, J. K. Obermaier, and F. Waas. Load Balanced Query Evaluation in
Shared-Everything Environments. InProceedings of the European Conference
on Parallel Processing (EuroPar), number 1300 in Lecture Notes in Computer
Science, pages 1117–1124, Passau, Germany, August 1997.

[13] S. Manegold. Efficient Data-Parallel Query Processing in Shared-Everything
Environments. InTechnologie für Parallele Datenbanksysteme — Bericht
zum Workshop, München, Germany, February 1997. Technische Universität
München, Institut f̈ur Informatik. In German.

Technical Reports

[1] S. Manegold, P. A. Boncz, and M. L. Kersten. Generic Database Cost Models for
Hierarchical Memory Systems. Technical Report INS-R0203, CWI, Amsterdam,
The Netherlands, March 2002.

[2] S. Manegold, A. Pellenkoft, and M. L. Kersten. A Multi-Query Optimizer for
Monet. Technical Report INS-R0002, CWI, Amsterdam, The Netherlands, Jan-
uary 2000.

[3] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing Main-Memory Join On
Modern Hardware. Technical Report INS-R9912, CWI, Amsterdam, The Nether-
lands, October 1999.

[4] S. Manegold, F. Waas, and M. L. Kersten. On Optimal Pipeline Processing in
Parallel Query Optimization. Technical Report INS-R9805, CWI, Amsterdam,
The Netherlands, February 1998.

164 Publications

[5] S. Manegold and J. K. Obermaier. Efficient Resource Utilization in Shared-
Everything Environments. Technical Report INS-R9711, CWI, Amsterdam, The
Netherlands, December 1997.

[6] S. Manegold, J. K. Obermaier, and F. Waas. Flexible Query Optimization in
Parallel Database Systems (Working Paper). Technical Report HUB-IB-80, Hum-
boldt-Universiẗat zu Berlin, Institut f̈ur Informatik, Berlin, Germany, February
1997. In German.

[7] S. Manegold, J. K. Obermaier, and F. Waas. Load Balanced Query Evaluation
in Shared-Everything Environments (Extended Version). Technical Report HUB-
IB-70, Humboldt-Universiẗat zu Berlin, Institut f̈ur Informatik, Berlin, Germany,
September 1996.

[8] S. Manegold, J. K. Obermaier, F. Waas, and J.-C. Freytag. Load Balanced Query
Evaluation in Shared-Everything Environments. Technical Report HUB-IB-61,
Humboldt-Universiẗat zu Berlin, Institut f̈ur Informatik, Berlin, Germany, June
1996.

[9] S. Manegold, J. K. Obermaier, F. Waas, and J.-C. Freytag. Data Threaded Query
Evaluation in Shared-Everything Environments. Technical Report HUB-IB-58,
Humboldt-Universiẗat zu Berlin, Institut f̈ur Informatik, Berlin, Germany, April
1996.

List of Tables and Figures

Tables

3.1 Characteristic Parameters per Cache Level 49
3.2 Calibrated Performance Characteristics 66

4.1 Sample Data Access Patterns . 79
4.2 Hardware Characteristics . 99

5.1 Hardware Counters used for Execution Time Breakdown 112

Figures

1.1 Query Processing Architecture . 12

2.1 Vertically Decomposed Storage in BATs 38

3.1 Trends in DRAM and CPU speed . 42
3.2 Modern CPU and Hierarchical Memory Architecture 42
3.3 Sequential scan: Performance . 50
3.4 Sequential scan: Cache misses . 50
3.5 Seq. scan cache misses: Measured and Modeled 52
3.6 Seq. scan performance: Experiment and Models 52
3.7 CPU and memory access costs per tuple in a simple table scan 54
3.8 Vertical Decomposition in BATs . 56
3.9 Calibration Tool: Walking “backward” through the memory array . . . 58
3.10 Calibration Tool: Cache sizes, line sizes, and miss latencies 60
3.11 Calibration Tool: Cache sizes, line sizes, and replace times 61
3.12 Calibration Tool: Cache associativities 63
3.13 Calibration Tool: TLB entries and TLB miss costs 64
3.14 Three ways to add a buffer of integers, and costs per addition on the

Origin2000 . 67

166 List of Tables and Figures

4.1 Single Sequential Traversal:s trav(R,u) 76
4.2 Single Random Traversal:r trav(R,u) 76
4.3 Interleaved Multi-Cursor Access:nest(R,m, s trav(R,u), seq, bi) . . 77
4.4 Impact of gap-size on the Number of Cache Misses 81
4.5 Impact of Alignment on the Number of Cache Misses 82
4.6 Impact ofu and its Alignment on the Number of Cache Misses 84
4.7 Impact of length and width on the Number of Cache Misses 86
4.8 Measured and Predicted Cache Misses and Execution Time of Quick-

Sort . 100
4.9 Measured and Predicted Cache Misses and Execution Time of Merge-

Join . 101
4.10 Measured and Predicted Cache Misses and Execution Time of Hash-Join102
4.11 Measured and Predicted Cache Misses and Execution Time of Parti-

tioning and Partitioned Hash-Join 102

5.1 Straightforward cluster algorithm . 109
5.2 2-pass/3-bit Radix Cluster . 109
5.3 Execution Time Breakdown of Radix-Cluster using one pass 113
5.4 Execution Time Breakdown of Radix-Cluster using optimal number

of passes . 114
5.5 C language radix-cluster with annotated CPU optimizations 115
5.6 Execution Time Breakdown of optimized Radix-Cluster using one pass 116
5.7 Execution Time Breakdown of optimized Radix-Cluster using optimal

number of passes . 117
5.8 Measured and Modeled Events of Radix-Cluster (Origin2000) 119
5.9 Measured and Modeled Performance of Radix-Cluster 120
5.10 Bit-distribution for 2-pass Radix-Cluster 121
5.11 Execution Time Breakdown of Partitioned Hash-Join 122
5.12 C language hash-join with annotated CPU optimizations 123
5.13 Execution Time Breakdown of optimized Partitioned Hash-Join . . . 124
5.14 Measured and Modeled Events of Partitioned Hash-Join (Origin2000) 126
5.15 Measured and Modeled Time of Partitioned Hash-Join 127
5.16 Overall Performance of Partitioned Hash-Join 129
5.17 Measured and Modeled Overall Performance of Partitioned Hash-Join 130
5.18 Execution Time Breakdown of Radix-Join 132
5.19 C language nested-loop with annotated CPU optimizations 133
5.20 Execution Time Breakdown of optimized Radix-Join 133
5.21 Measured and Modeled Events and Performance of Radix-Join 135
5.22 Overall Performance of Radix-Join 136
5.23 Partitioned Hash-Join vs. Radix-Join: non-optimized and optimized . 137

List of Symbols

number of cache lines . 49

� concurrent execution . 78

⊕ sequential execution . 78(
x
y

)
binomial coefficient . 88{

x
y

}
Stirling number of second kind . 89

|R| length of data regionR [number of data items]. 74

R width of data regionR (size data items) [in bytes] . 74

||R|| size of data regionR [in bytes] . 74

|x|y = dx/ye . 74

A cache associativity . 49

β cache access bandwidth [in bytes/ns] . 49

b cache miss bandwidth [in bytes/ns] . 49

B total number of radix-bits . 110

Bp number of radix-bits per pass . 110

C number of distinct cache lines touched byr acc(r,R,u) 89

C cache capacity [in bytes] . 49

D set of data regions . 74

E number of all different outcomes of pickingr times one of the|R| data items
allowing multiple accesses to each data item . 88

E j number of outcomes containing exactly 1≤ j ≤ min{r, |R|} distinct data items
88

168 List of Symbols

F footprint of access pattern . 94

H total number of clusters or partitions . 109

Hp number of clusters per pass . 110

I number of distinct data items touched byr acc(r,R,u) 88

i indicate cache level . 49

Li cache name (level) . 49

λ cache access latency [in ns] . 49

l cache miss latency [in ns] . 49

M number of cache misses . 51

~M = 〈M s,M r〉 , number of cache misses caused by both sequential and random
access . 79

nest interleaved multi-cursor access . 77

N number of cache levels . 49

O overlap function . 52

o degree of overlap . 52

P an access pattern . 78

Pb set of basic access patterns . 78

Pc set of compound access patterns . 78

P = Pb ∪ Pc, set of all access patterns . 78

P number of radix-cluster passes . 110

r acc random access . 77

rr trav repetitive random traversal . 77

rs trav repetitive sequential traversal . 76

r trav single random traversal . 77

r indicate random access. 49

R a data region . 74

S cache state . 93

s trav single sequential traversal . 76

169

s indicate sequential access . 49

s access stride . 51

T execution time [in ns] . 51

U,V,W data regions . 79

~X additional cache misses with interleaved multi-cursor access 92

Z cache block size [in bytes] . 49

170

Samenvatting

Databank management systemen (DBMS) zijn bekend als belangrijke software pro-
ducten voor het opslaan en bewerken van gegevens in de zakelijke en wetenschap-
pelijke wereld. Databanken worden bijvoorbeeld ingezet om de gegevens van me-
dewerkers en klanten te beheren, om boekhouding en opslag te ondersteunen, of om
productieprocessen te volgen. Wetenschappers gebruiken databanken om data van hun
experimenten op te slaan en te analyseren. Ook in het dagelijks leven worden databan-
ken steeds vaker aangetroffen. Priv́e computers (PC’s) worden steeds krachtiger — 1
gigabyte (GB) werkgeheugen en 160 GB opslagruimte op een enkele standaard harde
schijf zijn niet alleen beschikbaar, maar ook betaalbaar — en dus worden databank
systemen steeds vaker ingezet als standaard onderdeel van verschillende computer
applicaties, net zoals tabel- en tekstverwerkingsprogramma’s reeds eerder. Zelfs in
draagbare apparatuur zoals PDA’s en mobiele telefoons worden (kleine) databanken
gebruikt om bijvoorbeeld adressen, telefoonnummers of een digitaal foto album op te
slaan.

Het grote succes van databank management systemen is met name gebaseerd op
twee punten. (1) Gebruikers kunnen hun informatieaanvragen op een intuı̈tieve manier
formuleren in zogenoemde beschrijvende (declaratieve) talen zoals SQL. Dit betekent,
dat men alleen moet vertellenwat men wil weten maar niethoemen de informatie uit
de opgeslagen data moet halen. Noch programmeerkunsten noch inzicht in de manier
hoe het systeem de data fysiek opgeslagen heeft zijn dus vereist om databanken te
kunnen gebruiken. Helemaal onzichtbaar voor de gebruiker gaat het DBMS de beste
manier uitzoeken, om de aangevraagde informatie te leveren. Wij noemen dit proces
vraagverwerking en -optimalisatie. (2) Na decennia van onderzoek en ontwikkeling
heeft de DBMS technologie een heel stabiele en efficiënte status bereikt. In de meeste
commercïele DBMS producten is deze technologie evenwel gebaseerd op de eigen-
schappen van de hardware van ruim twee decennia geleden. Implementatie en optima-
lisatie van DBMS modulen is voornamelijk gericht op het minimaliseren van het aan-
tal van operaties die gegevens van de harde schijf aflezen of daarheen wegschrijven.
Pas daarna worden ook de processorkosten (d.w.z. de rekentijd) geoptimaliseerd. De
kosten voor het schrijven en lezen van data, die al in het werkgeheugen beschikbaar is,
werden geheel genegeerd, omdat het werkgeheugen net zo snel als de processoren was
en de kosten voor het schrijven en lezen van data in het werkgeheugen onafhankelijk
waren van de locatie waar de data in het werkgeheugen staat.

De ontwikkeling van computer hardware tijdens de afgelopen twee decennia ver-

172 Samenvatting

toont een beeld van opmerkelijke verandering. Met name de snelheid van processoren
volgt de wet van Moore, d.w.z. door het verhogen vanén de processorkloksnelheid
én de parallelliteit binnen de processor verdubbelt de snelheid iedere 18 maanden.
Voor het werkgeheugen geldt de wet van Moore slechts gedeeltelijk. Debandbreedte
— het vermogen hoeveel data maximaal per tijdeenheid uit het werkgeheugen gele-
zen of naar het werkgeheugen geschreven kan worden — groeit wel bijna net zo snel
als de snelheid van de processoren maar de tijd die nodig is om een enkele byte uit
het geheugen te halen of daarheen te schrijven — wij noemen dittoegangstijd— is
bijna niet veranderd. Om het uit-elkaar-lopen van processorsnelheid en geheugentoe-
gangstijd te beperken, hebben hardware producenten zo genoemde cache geheugens
gëıntroduceerd. Deze snelle maar dure (en dus kleine) geheugenmodules worden,
inmiddels in meerdere “verdiepingen”, (logisch1) tussen de processor en het werkge-
heugen geplaatst en kunnen zo de toegangstijd verlagen, als de aangevraagde data al
in één van de cache geheugens zit. Wij noemen dit een hiërarchisch geheugensysteem.

In dit proefschrift wordt bestudeerd welke invloed deze veranderingen in de hard-
ware situatie op de prestatie van databank systemen heeft en hoe databank technolo-
gieën moeten worden aangepast om rekening te houden met de gewijzigde hardware
situatie.

Het onderzoek is gesplitst in vier gedeeltes. De eerste twee hoofdstukken geven
een introductie tot databank systemen, met name vraagverwerking en de rol van kos-
tenmodellen in vraagoptimalisatie.

Hoofdstuk 3 bestudeert hoe de prestatie van met name werkgeheugen-gebaseerde
databank systemen bepaald is door de eigenschappen van de hardware, zoals pro-
cessorsnelheid, aantal, grootte en snelheid van de cache geheugens, toegangstijd en
bandbreedte van het werkgeheugen. In ons onderzoek gebruiken wij zogenoemde
hardware event countersdie in alle huidige processoren beschikbaar zijn en waarmee
wij de frequentie van gebeurtenissen zoalscache misses, TLB misses, resource stalls
en branch mispredictionskunnen meten. Met behulp van eenvoudige maar repre-
sentatieve experimenten tonen wij aan, dat de toegang tot data in het werkgeheugen
inderdaad inmiddels een grote beperking voor de prestatie van databank systemen
oplevert. Standaard databank technologie is helaas niet geschikt om de beschikbare
cache geheugens optimaal te kunnen benutten. Onze resultaten tonen ook aan, dat kos-
tenmodellen voor vraagoptimalisatie de kosten voor de toegang tot data in het werkge-
heugen niet langer mogen negeren, omdat de toegang tot data in het geheugen nu niet
meer “gratis” is en varieert, afhankelijk van in welk cache niveau de data misschien
al beschikbaar is. Verder ontwikkelen wij in hoofdstuk 3 een programma, de “Cali-
brator”, waarmee wij de (voor ons) belangrijke hardware eigenschappen, zoals aantal,
grootte en snelheid van de cache geheugens, grootte van cache regels, toegangstijd en
bandbreedte van het werkgeheugen, op verschillende computersystemen automatisch
kunnen meten.

Het doel van hoofdstuk 4 is om modellen te ontwikkelen, die de kosten (d.w.z. de
tijd die ervoor nodig is) voor de toegang tot data in het geheugen van databank algo-
ritmen kunnen voorspellen. Het idee is om het aantal kostgerelateerde gebeurtenis-

1Fysiek worden cache geheugens tegenwoordig meestal in de processorchips geı̈ntegreerd.

173

sen, met name cache en TLB misses, van databank algoritmen te voorspellen en deze
met de kosten per gebeurtenis te vermenigvuldigen. Verder introduceert onze aanpak
twee andere innovaties ten opzichte van traditionele databank kostenmodellen. Ten
eerste wordt het proces, om kostenfuncties voor willekeurige databank algoritmen te
crëeren, gegeneraliseerd en vereenvoudigd. Voor dit doel introduceren wij het concept
van datatoegangspatronen. Hierdoor moeten de meestal ingewikkelde kostenfuncties
niet meer “handmatig” voor ieder algoritme worden gecreëerd. In plaats daarvan kun-
nen de (complexe) datatoegangspatronen van databank algoritmen worden beschre-
ven als combinatie van eenvoudige basispatronen zoals “van sequentiële volgorde” of
“van toevallige volgorde”. De echte kostenfuncties kunnen vanuit deze beschrijvin-
gen automatisch worden gegenereerd. Hiervoor ontwikkelen wij in hoofdstuk 4 de
kostenfuncties voor onze basispatronen en geven voorschriften hoe deze volgens de
beschrijvingen tot complexe functies moeten worden gecombineerd. De tweede in-
novatie gaat over de hardware afhankelijkheid van fysieke kostenmodellen. Het idee
is om maaŕeén gemeenschappelijk kostenmodel nodig te hebben, in plaats van vele
modellen waarvan elk maaréén bepaalde hardware architectuur beschrijft. Om dit
te bereiken introduceren wij een nieuw uniform hardware model voor hiërarchische
geheugensystemen. Dit model bewaart voor iedere cachelaag en het werkgeheugen
de eigenschappen, zoals grootte, bandbreedte en toegangstijd. De kostenfuncties zijn
ontworpen om deze parameters te gebruiken. Voor een nieuw of veranderd hardware
platform moeten dus geen kostenfuncties worden veranderd. Slechts de nieuwe hard-
ware parameters moeten worden gemeten (met behulp van de Calibrator) en worden
ingevoegd in de kostenfuncties.

In hoofdstuk 5 onderzoeken wij hoe wij de ervaringen uit hoofdstuk 3 en de mo-
dellen uit hoofdstuk 4 kunnen gebruiken om databank algoritmen te creëren, die het
vermogen van huidige computers beter benutten. Wij gebruiken de equi-join als voor-
beeld en ontwikkelen nieuwe radix-algoritmen voor de gepartitioneerde hash-join. Het
idee is om het aantal cache misses te verkleinen door toegangpatronen met een toe-
vallige volgorde te beperken tot de kleinste cache. Wij gebruiken de kostenmodellen
om de algoritmen automatisch te kunnen aanpassen voor verschillende hardware sys-
temen. Verder presenteren wij implementatie technieken om de processorkosten te
optimaliseren door het aantal functie aanroepen, vertakkingen en data afhankelijkhe-
den te verkleinen.

Het zesde hoofdstuk is een samenvatting van de belangrijkste punten en geeft mo-
gelijke richtingen voor vervolgonderzoek.

174

SIKS Dissertatiereeks

1998-01 Johan van den Akker (CWI/UvA), DEGAS - An Active, Temporal Database of Au-
tonomous Objects.

1998-02 Floris Wiesman (UM),Information Retrieval by Graphically Browsing Meta-
Information.

1998-03 Ans Steuten (TUD),A Contribution to the Linguistic Analysis of Business Conver-
sations within the Language/Action Perspective.

1998-04 Dennis Breuker (UM),Memory versus Search in Games.
1998-05 E.W. Oskamp (RUL),Computerondersteuning bij Straftoemeting.

1999-01 Mark Sloof (VU),Physiology of Quality Change Modelling; Automated modelling
of Quality Change of Agricultural Products.

1999-02 Rob Potharst (EUR),Classification using decision trees and neural nets.
1999-03 Don Beal (UM),The Nature of Minimax Search.

1999-04 Jacques Penders (UM),The practical Art of Moving Physical Objects.
1999-05 Aldo de Moor (KUB),Empowering Communities: A Method for the Legitimate

User-Driven Specification of Network Information Systems.
1999-06 Niek J.E. Wijngaards (VU),Re-design of compositional systems.
1999-07 David Spelt (UT),Verification support for object database design.

1999-08 Jacques H.J. Lenting (UM),Informed Gambling: Conception and Analysis of a
Multi-Agent Mechanism for Discrete Reallocation.

2000-01 Frank Niessink (VU),Perspectives on Improving Software Maintenance.

2000-02 Koen Holtman (TUE),Prototyping of CMS Storage Management.
2000-03 Carolien M.T. Metselaar (UvA),Sociaal-organisatorische gevolgen van kennistech-

nologie; een procesbenadering en actorperspectief.
2000-04 Geert de Haan (VU),ETAG, A Formal Model of Competence Knowledge for User

Interface Design.

2000-05 Ruud van der Pol (UM),Knowledge-based Query Formulation in Information
Retrieval.

2000-06 Rogier van Eijk (UU),Programming Languages for Agent Communication.

2000-07 Niels Peek (UU),Decision-theoretic Planning of Clinical Patient Management.
2000-08 Veerle Coup (EUR),Sensitivity Analysis of Decision-Theoretic Networks.
2000-09 Florian Waas (CWI/UvA), Principles of Probabilistic Query Optimization.

2000-10 Niels Nes (CWI/UvA), Image Database Management System Design Considerati-
ons, Algorithms and Architecture.

2000-11 Jonas Karlsson (CWI/UvA), Scalable Distributed Data Structures for Database
Management.

2001-01 Silja Renooij (UU),Qualitative Approaches to Quantifying Probabilistic Networks.
2001-02 Koen Hindriks (UU),Agent Programming Languages: Programming with Mental

Models.
2001-03 Maarten van Someren (UvA),Learning as problem solving.

2001-04 Evgueni Smirnov (UM),Conjunctive and Disjunctive Version Spaces with Instance-
Based Boundary Sets.

175

2001-05 Jacco van Ossenbruggen (VU),Processing Structured Hypermedia: A Matter of
Style.

2001-06 Martijn van Welie (VU),Task-based User Interface Design.

2001-07 Bastiaan Schonhage (VU),Diva: Architectural Perspectives on Information
Visualization.

2001-08 Pascal van Eck (VU),A Compositional Semantic Structure for Multi-Agent Systems
Dynamics.

2001-09 Pieter Jan ’t Hoen (RUL),Towards Distributed Development of Large Object-
Oriented Models, Views of Packages as Classes.

2001-10 Maarten Sierhuis (UvA),Modeling and Simulating Work Practice BRAHMS: a mul-
tiagent modeling and simulation language for work practice analysis and design.

2001-11 Tom M. van Engers (VU),Knowledge Management: The Role of Mental Models in
Business Systems Design.

2002-01 Nico Lassing (VU),Architecture-Level Modifiability Analysis.
2002-02 Roelof van Zwol (UT),Modelling and searching web-based document collections.
2002-03 Henk Ernst Blok (UT),Database Optimization Aspects for Information Retrieval.
2002-04 Juan Roberto Castelo Valdueza (UU),The Discrete Acyclic Digraph Markov Model

in Data Mining.

2002-05 Radu Serban (VU),The Private Cyberspace Modeling Electronic Environments in-
habited by Privacy-concerned Agents.

2002-06 Laurens Mommers (UL),Applied legal epistemology; Building a knowledge-based
ontology of the legal domain.

2002-07 Peter Boncz (CWI/UvA), Monet: A Next-Generation DBMS Kernel For Query-
Intensive Applications.

2002-08 Jaap Gordijn (VU),Value Based Requirements Engineering: Exploring Innovative
E-Commerce Ideas.

2002-09 Willem-Jan van den Heuvel (KUB),Integrating Modern Business Applications with
Objectified Legacy Systems.

2002-10 Brian Sheppard (UM),Towards Perfect Play of Scrabble.

2002-11 Wouter C.A. Wijngaards (VU),Agent Based Modelling of Dynamics: Biological
and Organisational Applications.

2002-12 Albrecht Schmidt (CWI/UvA), Processing XML in Database Systems.
2002-13 Hongjing Wu (TUE),A Reference Architecture for Adaptive Hypermedia

Applications.
2002-14 Wieke de Vries (UU),Agent Interaction: Abstract Approaches to Modelling, Pro-

gramming and Verifying Multi-Agent Systems.
2002-15 Rik Eshuis (UT),Semantics and Verification of UML Activity Diagrams for Work-

flow Modelling.

2002-16 Pieter van Langen (VU),The Anatomy of Design: Foundations, Models and
Applications.

2002-17 Stefan Manegold (CWI/UvA), Understanding, Modeling, and Improving Main-
Memory Database Performance.

ISBN 90 6196 517 9

